数列 $1(n+1), 2n, 3(n-1), \dots, (n-1)3, n2$ の和を求める問題です。代数学数列和シグマ一般項数式処理2025/3/141. 問題の内容数列 1(n+1),2n,3(n−1),…,(n−1)3,n21(n+1), 2n, 3(n-1), \dots, (n-1)3, n21(n+1),2n,3(n−1),…,(n−1)3,n2 の和を求める問題です。2. 解き方の手順数列の一般項 aka_kak は ak=k(n+2−k)a_k = k(n+2-k)ak=k(n+2−k) と表せます。したがって、求める和は∑k=1nk(n+2−k)=∑k=1n(kn+2k−k2)=∑k=1nkn+∑k=1n2k−∑k=1nk2\sum_{k=1}^n k(n+2-k) = \sum_{k=1}^n (kn + 2k - k^2) = \sum_{k=1}^n kn + \sum_{k=1}^n 2k - \sum_{k=1}^n k^2 k=1∑nk(n+2−k)=k=1∑n(kn+2k−k2)=k=1∑nkn+k=1∑n2k−k=1∑nk2と表せます。ここで、∑k=1nk=n(n+1)2 \sum_{k=1}^n k = \frac{n(n+1)}{2} k=1∑nk=2n(n+1)∑k=1nk2=n(n+1)(2n+1)6 \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6} k=1∑nk2=6n(n+1)(2n+1)であることから、∑k=1nkn=n∑k=1nk=nn(n+1)2=n2(n+1)2 \sum_{k=1}^n kn = n \sum_{k=1}^n k = n\frac{n(n+1)}{2} = \frac{n^2(n+1)}{2} k=1∑nkn=nk=1∑nk=n2n(n+1)=2n2(n+1)∑k=1n2k=2∑k=1nk=2n(n+1)2=n(n+1) \sum_{k=1}^n 2k = 2 \sum_{k=1}^n k = 2\frac{n(n+1)}{2} = n(n+1) k=1∑n2k=2k=1∑nk=22n(n+1)=n(n+1)∑k=1nk2=n(n+1)(2n+1)6 \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6} k=1∑nk2=6n(n+1)(2n+1)したがって、∑k=1nk(n+2−k)=n2(n+1)2+n(n+1)−n(n+1)(2n+1)6 \sum_{k=1}^n k(n+2-k) = \frac{n^2(n+1)}{2} + n(n+1) - \frac{n(n+1)(2n+1)}{6} k=1∑nk(n+2−k)=2n2(n+1)+n(n+1)−6n(n+1)(2n+1)=n(n+1)6(3n+6−(2n+1))=n(n+1)(n+5)6 = \frac{n(n+1)}{6}(3n + 6 - (2n+1)) = \frac{n(n+1)(n+5)}{6} =6n(n+1)(3n+6−(2n+1))=6n(n+1)(n+5)3. 最終的な答えn(n+1)(n+5)6\frac{n(n+1)(n+5)}{6}6n(n+1)(n+5)