図において、$\angle ABC = \angle ACD$, $AB = 6 \text{ cm}$, $BC = 4 \text{ cm}$, $CA = 3 \text{ cm}$ のとき、$AD$ の長さを求める。

幾何学相似三角形辺の比
2025/4/13

1. 問題の内容

図において、ABC=ACD\angle ABC = \angle ACD, AB=6 cmAB = 6 \text{ cm}, BC=4 cmBC = 4 \text{ cm}, CA=3 cmCA = 3 \text{ cm} のとき、ADAD の長さを求める。

2. 解き方の手順

まず、ABC\triangle ABCACD\triangle ACD が相似であることを示す。
ABC=ACD\angle ABC = \angle ACD (問題文より)
BAC=CAD\angle BAC = \angle CAD (共通)
したがって、2組の角がそれぞれ等しいので、ABCACD\triangle ABC \sim \triangle ACD である。
相似な三角形の対応する辺の比は等しいので、
ABAC=BCCD=ACAD\frac{AB}{AC} = \frac{BC}{CD} = \frac{AC}{AD}
63=4CD=3AD\frac{6}{3} = \frac{4}{CD} = \frac{3}{AD}
63=3AD\frac{6}{3} = \frac{3}{AD} より、
2=3AD2 = \frac{3}{AD}
AD=32=1.5AD = \frac{3}{2} = 1.5

3. 最終的な答え

AD=1.5 cmAD = 1.5 \text{ cm}

「幾何学」の関連問題

問題は、円の性質、角の二等分線の性質、方べきの定理、メネラウスの定理などを用いて、線分の長さや比、面積を求める問題です。 (1) $\triangle ABC$ において、$AC = 5$, $AB ...

角の二等分線方べきの定理メネラウスの定理三平方の定理相似
2025/4/14

座標平面上の3点 $A(0, 3)$、$B(0, 2)$と $x$ 軸上の点 $P(x, 0)$を考える。$0 \le \angle APB \le \pi$ の条件のもとで、$\angle APB$...

座標平面角度接線
2025/4/14

問題10は、直方体を二つに分けてできた三角柱に関する問題で、以下の2つの問いに答える必要があります。 (1) 辺ABとねじれの位置にある辺をすべて答える。 (2) 面ABCと垂直な面をすべて答える。 ...

空間図形三角柱ねじれの位置円錐体積表面積
2025/4/14

問題8は、合同な二等辺三角形が組み合わされた図形に関する2つの問題です。 (1) $\triangle AOH$ を直線CGを対称の軸として対称移動させたときに重なる三角形を答える。 (2) $\tr...

合同二等辺三角形対称移動回転移動
2025/4/14

三角形ABCにおいて、$AB=26$, $BC=18$, $AC=10$である。角Aの二等分線と辺BCの交点をDとする。このとき、線分BDの長さを求めよ。

三角形角の二等分線角の二等分線の定理相似
2025/4/14

三角形ABCにおいて、$AB=26$, $BC=24$, $AC=10$である。角Aの二等分線と辺BCの交点をDとするとき、$BD:DC$を求めよ。

幾何三角形角の二等分線
2025/4/14

三角形ABCにおいて、$AB = 20$, $BC = 16$, $AC = 12$である。角Aの二等分線と辺BCの交点をDとするとき、線分BDの長さを求めよ。

三角形角の二等分線線分の長さ
2025/4/14

三角形ABCにおいて、$AB = 12$, $BC = 14$, $AC = 9$である。角Aの二等分線と辺BCの交点をDとする。線分BDの長さを求めよ。

三角形角の二等分線角の二等分線の定理
2025/4/14

三角形ABCにおいて、$AB=5$, $BC=3$, $AC=4$である。角Aの外角の二等分線と辺BCの延長との交点をDとする。線分BDの長さを求めよ。

三角形外角の二等分線相似
2025/4/14

三角形ABCにおいて、AB=8, BC=10, AC=4である。角Aの二等分線と辺BCの交点をDとする。このとき、BD:DCを求めよ。

幾何三角形角の二等分線
2025/4/14