数列 $1 \cdot (n+1), 2 \cdot n, 3 \cdot (n-1), \dots, (n-1) \cdot 3, n \cdot 2$ の和を求める。

代数学数列シグマ一般項数学的帰納法
2025/3/14

1. 問題の内容

数列 1(n+1),2n,3(n1),,(n1)3,n21 \cdot (n+1), 2 \cdot n, 3 \cdot (n-1), \dots, (n-1) \cdot 3, n \cdot 2 の和を求める。

2. 解き方の手順

数列の一般項を aka_k とすると、 ak=k(n+2k)a_k = k(n+2-k) と表せる。したがって、求める和 SS は、
S=k=1nk(n+2k)=k=1n(kn+2kk2)=k=1nkn+k=1n2kk=1nk2S = \sum_{k=1}^{n} k(n+2-k) = \sum_{k=1}^{n} (kn+2k-k^2) = \sum_{k=1}^{n} kn + \sum_{k=1}^{n} 2k - \sum_{k=1}^{n} k^2
ここで、k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2} および k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} であることを用いる。
S=nk=1nk+2k=1nkk=1nk2=nn(n+1)2+2n(n+1)2n(n+1)(2n+1)6S = n \sum_{k=1}^{n} k + 2 \sum_{k=1}^{n} k - \sum_{k=1}^{n} k^2 = n \frac{n(n+1)}{2} + 2 \frac{n(n+1)}{2} - \frac{n(n+1)(2n+1)}{6}
=n2(n+1)2+n(n+1)n(n+1)(2n+1)6= \frac{n^2(n+1)}{2} + n(n+1) - \frac{n(n+1)(2n+1)}{6}
=n(n+1)6(3n+6(2n+1))= \frac{n(n+1)}{6} (3n + 6 - (2n+1))
=n(n+1)6(3n+62n1)= \frac{n(n+1)}{6} (3n+6-2n-1)
=n(n+1)(n+5)6= \frac{n(n+1)(n+5)}{6}

3. 最終的な答え

n(n+1)(n+5)6\frac{n(n+1)(n+5)}{6}

「代数学」の関連問題

(1) $x + y + z = 10$ を満たす負でない整数 $x, y, z$ の組の数を求める。 (2) $x + y + z = 10$ を満たす正の整数 $x, y, z$ の組の数を求める...

重複組み合わせ方程式整数解
2025/5/8

初項から第10項までの和が4、初項から第20項までの和が24である等比数列について、初項から第40項までの和を求める。ただし、公比は実数とする。

等比数列数列の和数列
2025/5/8

$a$ が与えられた値をとるとき、$|a-1| + |a+2|$ の値を求める問題です。$a$ はそれぞれ (1) 3, (2) 0, (3) -1, (4) $-\sqrt{3}$ の値をとります。

絶対値式の計算
2025/5/8

次の式を計算しなさい。 $\frac{5a - 7b}{2} - (4a - b)$

式の計算分数式同類項
2025/5/8

多項式 $6x^4 + 7x^3 - 9x^2 - x + 2$ を多項式 $B$ で割ったとき、商が $2x^2 + x - 3$、余りが $6x - 1$ である。このとき、$B$ を求めよ。

多項式除法多項式の割り算
2025/5/8

$x^3 - x^2 + 3x + 1$ を整式 $B$ で割ったとき、商が $x+1$、余りが $3x-1$ となるような整式 $B$ を求める。

多項式割り算因数分解組立除法
2025/5/8

整式 $A$ を $x^2+x+1$ で割ると、商が $x-3$ で余りが $2x-1$ である。このとき、整式 $A$ を求めよ。

多項式割り算因数定理
2025/5/8

整式 $A$ を $x^2 - 2x - 1$ で割ると、商が $2x - 3$、余りが $-2x$ である。このとき、$A$ を求めよ。

多項式割り算式の計算
2025/5/8

問題(2)は、整式 $A$ を $x^2 + x + 1$ で割ると、商が $x-3$ で、余りが $2x-1$ であるとき、$A$ を求める問題です。

整式多項式割り算展開
2025/5/8

与えられた連立方程式の解 $(x, y)$ を求める問題です。連立方程式は以下の通りです。 $4\lambda = \frac{2}{3} x^{-\frac{1}{3}} y^{\frac{1}{3...

連立方程式数式処理解の導出
2025/5/8