数列 $1^2 \cdot n, 2^2(n-1), 3^2(n-2), \dots, (n-1)^2 \cdot 2, n^2 \cdot 1$ の和を求める問題です。代数学数列Σ級数シグマ計算2025/3/141. 問題の内容数列 12⋅n,22(n−1),32(n−2),…,(n−1)2⋅2,n2⋅11^2 \cdot n, 2^2(n-1), 3^2(n-2), \dots, (n-1)^2 \cdot 2, n^2 \cdot 112⋅n,22(n−1),32(n−2),…,(n−1)2⋅2,n2⋅1 の和を求める問題です。2. 解き方の手順一般項を ak=k2(n−k+1)a_k = k^2 (n-k+1)ak=k2(n−k+1) と表し、∑k=1nak\sum_{k=1}^n a_k∑k=1nak を計算します。まず、一般項を整理します。ak=k2(n−k+1)=k2n−k3+k2a_k = k^2(n-k+1) = k^2n - k^3 + k^2ak=k2(n−k+1)=k2n−k3+k2∑k=1nak=∑k=1n(k2n−k3+k2)\sum_{k=1}^n a_k = \sum_{k=1}^n (k^2n - k^3 + k^2)∑k=1nak=∑k=1n(k2n−k3+k2)=n∑k=1nk2−∑k=1nk3+∑k=1nk2= n \sum_{k=1}^n k^2 - \sum_{k=1}^n k^3 + \sum_{k=1}^n k^2=n∑k=1nk2−∑k=1nk3+∑k=1nk2=(n+1)∑k=1nk2−∑k=1nk3= (n+1) \sum_{k=1}^n k^2 - \sum_{k=1}^n k^3=(n+1)∑k=1nk2−∑k=1nk3ここで、∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1) と ∑k=1nk3=(n(n+1)2)2\sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2∑k=1nk3=(2n(n+1))2 を用います。∑k=1nak=(n+1)n(n+1)(2n+1)6−(n(n+1)2)2\sum_{k=1}^n a_k = (n+1) \frac{n(n+1)(2n+1)}{6} - \left(\frac{n(n+1)}{2}\right)^2∑k=1nak=(n+1)6n(n+1)(2n+1)−(2n(n+1))2=n(n+1)6[(n+1)(2n+1)−32n(n+1)]= \frac{n(n+1)}{6} [(n+1)(2n+1) - \frac{3}{2} n(n+1)]=6n(n+1)[(n+1)(2n+1)−23n(n+1)]=n(n+1)6[2n2+3n+1−32n2−32n]= \frac{n(n+1)}{6} [2n^2+3n+1 - \frac{3}{2}n^2 - \frac{3}{2}n]=6n(n+1)[2n2+3n+1−23n2−23n]=n(n+1)6[12n2+32n+1]= \frac{n(n+1)}{6} [\frac{1}{2}n^2 + \frac{3}{2}n + 1]=6n(n+1)[21n2+23n+1]=n(n+1)12[n2+3n+2]= \frac{n(n+1)}{12} [n^2 + 3n + 2]=12n(n+1)[n2+3n+2]=n(n+1)12(n+1)(n+2)= \frac{n(n+1)}{12} (n+1)(n+2)=12n(n+1)(n+1)(n+2)=n(n+1)2(n+2)12= \frac{n(n+1)^2(n+2)}{12}=12n(n+1)2(n+2)3. 最終的な答えn(n+1)2(n+2)12\frac{n(n+1)^2(n+2)}{12}12n(n+1)2(n+2)