次の極限を計算します。 $\lim_{n \to \infty} \frac{n}{\sqrt{n^2+1} - \sqrt{n}}$解析学極限数列有理化2025/4/131. 問題の内容次の極限を計算します。limn→∞nn2+1−n\lim_{n \to \infty} \frac{n}{\sqrt{n^2+1} - \sqrt{n}}limn→∞n2+1−nn2. 解き方の手順まず、分母の有理化を行います。分母の共役な式 n2+1+n\sqrt{n^2+1} + \sqrt{n}n2+1+n を分子と分母に掛けます。nn2+1−n=n(n2+1+n)(n2+1−n)(n2+1+n)=n(n2+1+n)(n2+1)−n=n(n2+1+n)n2−n+1\frac{n}{\sqrt{n^2+1} - \sqrt{n}} = \frac{n(\sqrt{n^2+1} + \sqrt{n})}{(\sqrt{n^2+1} - \sqrt{n})(\sqrt{n^2+1} + \sqrt{n})} = \frac{n(\sqrt{n^2+1} + \sqrt{n})}{(n^2+1) - n} = \frac{n(\sqrt{n^2+1} + \sqrt{n})}{n^2-n+1}n2+1−nn=(n2+1−n)(n2+1+n)n(n2+1+n)=(n2+1)−nn(n2+1+n)=n2−n+1n(n2+1+n)次に、分子と分母を n2n^2n2 で割ります。n(n2+1+n)n2−n+1=n(n2(1+1n2)+n)n2(1−1n+1n2)=n(n1+1n2+n)n2(1−1n+1n2)=n21+1n2+nnn2(1−1n+1n2)\frac{n(\sqrt{n^2+1} + \sqrt{n})}{n^2-n+1} = \frac{n(\sqrt{n^2(1+\frac{1}{n^2})} + \sqrt{n})}{n^2(1-\frac{1}{n}+\frac{1}{n^2})} = \frac{n(n\sqrt{1+\frac{1}{n^2}} + \sqrt{n})}{n^2(1-\frac{1}{n}+\frac{1}{n^2})} = \frac{n^2\sqrt{1+\frac{1}{n^2}} + n\sqrt{n}}{n^2(1-\frac{1}{n}+\frac{1}{n^2})}n2−n+1n(n2+1+n)=n2(1−n1+n21)n(n2(1+n21)+n)=n2(1−n1+n21)n(n1+n21+n)=n2(1−n1+n21)n21+n21+nnさらに、分子と分母を n2n^2n2 で割ります。n21+1n2+nnn2(1−1n+1n2)=1+1n2+nn1−1n+1n2=1+1n2+1n1−1n+1n2\frac{n^2\sqrt{1+\frac{1}{n^2}} + n\sqrt{n}}{n^2(1-\frac{1}{n}+\frac{1}{n^2})} = \frac{\sqrt{1+\frac{1}{n^2}} + \frac{\sqrt{n}}{n}}{1-\frac{1}{n}+\frac{1}{n^2}} = \frac{\sqrt{1+\frac{1}{n^2}} + \frac{1}{\sqrt{n}}}{1-\frac{1}{n}+\frac{1}{n^2}}n2(1−n1+n21)n21+n21+nn=1−n1+n211+n21+nn=1−n1+n211+n21+n1n→∞n \to \inftyn→∞ のとき、1n→0 \frac{1}{n} \to 0n1→0 および 1n2→0\frac{1}{n^2} \to 0n21→0 となるので、limn→∞1+1n2+1n1−1n+1n2=1+0+01−0+0=11=1\lim_{n \to \infty} \frac{\sqrt{1+\frac{1}{n^2}} + \frac{1}{\sqrt{n}}}{1-\frac{1}{n}+\frac{1}{n^2}} = \frac{\sqrt{1+0} + 0}{1-0+0} = \frac{1}{1} = 1limn→∞1−n1+n211+n21+n1=1−0+01+0+0=11=13. 最終的な答え1