次の関数を微分します。 $y = \sqrt{\frac{1-4x}{1+3x}}$解析学微分合成関数の微分対数微分法2025/4/141. 問題の内容次の関数を微分します。y=1−4x1+3xy = \sqrt{\frac{1-4x}{1+3x}}y=1+3x1−4x2. 解き方の手順まず、yyyを次のように書き換えます。y=(1−4x1+3x)1/2y = \left(\frac{1-4x}{1+3x}\right)^{1/2}y=(1+3x1−4x)1/2次に、両辺の自然対数を取ります。lny=ln(1−4x1+3x)1/2=12ln(1−4x1+3x)\ln y = \ln \left(\frac{1-4x}{1+3x}\right)^{1/2} = \frac{1}{2} \ln \left(\frac{1-4x}{1+3x}\right)lny=ln(1+3x1−4x)1/2=21ln(1+3x1−4x)lny=12[ln(1−4x)−ln(1+3x)]\ln y = \frac{1}{2} [\ln(1-4x) - \ln(1+3x)]lny=21[ln(1−4x)−ln(1+3x)]両辺をxxxについて微分します。1ydydx=12[−41−4x−31+3x]\frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left[ \frac{-4}{1-4x} - \frac{3}{1+3x} \right]y1dxdy=21[1−4x−4−1+3x3]1ydydx=12[−4(1+3x)−3(1−4x)(1−4x)(1+3x)]\frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left[ \frac{-4(1+3x) - 3(1-4x)}{(1-4x)(1+3x)} \right]y1dxdy=21[(1−4x)(1+3x)−4(1+3x)−3(1−4x)]1ydydx=12[−4−12x−3+12x(1−4x)(1+3x)]\frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left[ \frac{-4-12x - 3 + 12x}{(1-4x)(1+3x)} \right]y1dxdy=21[(1−4x)(1+3x)−4−12x−3+12x]1ydydx=12[−7(1−4x)(1+3x)]\frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left[ \frac{-7}{(1-4x)(1+3x)} \right]y1dxdy=21[(1−4x)(1+3x)−7]dydx=−72y(1−4x)(1+3x)\frac{dy}{dx} = \frac{-7}{2} \frac{y}{(1-4x)(1+3x)}dxdy=2−7(1−4x)(1+3x)yここで、y=1−4x1+3xy = \sqrt{\frac{1-4x}{1+3x}}y=1+3x1−4xを代入します。dydx=−721−4x1+3x(1−4x)(1+3x)\frac{dy}{dx} = \frac{-7}{2} \frac{\sqrt{\frac{1-4x}{1+3x}}}{(1-4x)(1+3x)}dxdy=2−7(1−4x)(1+3x)1+3x1−4xdydx=−721−4x1+3x1(1−4x)(1+3x)\frac{dy}{dx} = \frac{-7}{2} \frac{\sqrt{1-4x}}{\sqrt{1+3x}} \frac{1}{(1-4x)(1+3x)}dxdy=2−71+3x1−4x(1−4x)(1+3x)1dydx=−7211−4x1+3x(1−4x)(1+3x)\frac{dy}{dx} = \frac{-7}{2} \frac{1}{\sqrt{1-4x} \sqrt{1+3x} (1-4x)(1+3x)}dxdy=2−71−4x1+3x(1−4x)(1+3x)1dydx=−721(1−4x)3/2(1+3x)3/2\frac{dy}{dx} = \frac{-7}{2} \frac{1}{(1-4x)^{3/2} (1+3x)^{3/2}}dxdy=2−7(1−4x)3/2(1+3x)3/21dydx=−72(1−4x)3/2(1+3x)3/2\frac{dy}{dx} = \frac{-7}{2 (1-4x)^{3/2} (1+3x)^{3/2}}dxdy=2(1−4x)3/2(1+3x)3/2−73. 最終的な答えdydx=−72(1−4x)3/2(1+3x)3/2\frac{dy}{dx} = \frac{-7}{2 (1-4x)^{3/2} (1+3x)^{3/2}}dxdy=2(1−4x)3/2(1+3x)3/2−7