与えられた方程式 $5 \times 2 - 3 = \frac{5}{x}$ を解いて、$x$ の値を求める問題です。

代数学方程式一次方程式代数
2025/4/15

1. 問題の内容

与えられた方程式 5×23=5x5 \times 2 - 3 = \frac{5}{x} を解いて、xx の値を求める問題です。

2. 解き方の手順

まず、方程式の左辺を計算します。
5×2=105 \times 2 = 10
したがって、5×23=103=75 \times 2 - 3 = 10 - 3 = 7 となります。
方程式は 7=5x7 = \frac{5}{x} となります。
次に、この方程式を xx について解きます。
両辺に xx をかけると、7x=57x = 5 となります。
両辺を 77 で割ると、x=57x = \frac{5}{7} となります。

3. 最終的な答え

x=57x = \frac{5}{7}

「代数学」の関連問題

問題2の(3)の計算問題です。 $$\frac{x^2+x-6}{x^2-6x+9} \times \frac{3x-9}{2x+6}$$ を計算しなさい。

分数式因数分解式の計算約分
2025/4/15

整式 $P(x)$ が与えられており、以下の情報が与えられています。 * $P(x)$ を $x+3$ で割ったときの余りは5である。 * $P(x)$ を $x-2$ で割ったときの余りは1...

多項式剰余の定理連立方程式因数定理
2025/4/15

(1) 多項式 $A$ を $2x+1$ で割ると、商が $x^2-3x-2$、余りが $4$ である。$A$ を求める。 (2) 多項式 $x^3+x^2-3x-1$ を $B$ で割ると、商が $...

多項式割り算因数定理展開
2025/4/15

与えられた式を簡略化します。式は次の通りです。 $\frac{\sqrt{-3\sqrt{-2}+\sqrt{-2}}}{a+\sqrt{-3}}$

複素数式の簡略化分母の有理化
2025/4/15

整式 $P(x)$ を $2x^2 - 3x - 1$ で割ったときの商が $x^2 + x + 2$ で、余りが $-x + 3$ であるとき、$P(x)$ を求める問題です。

多項式割り算展開整式
2025/4/15

$a$ は実数とする。 $A = \frac{\sqrt{-3} }{\sqrt{-2} + a} + \frac{\sqrt{-3} }{\sqrt{-2} - a}$ が実数となるとき、$a$ の...

複素数有理化実数条件
2025/4/15

実数 $a$ に対して、$A = \frac{a + \sqrt{-3}}{\sqrt{-3}\sqrt{2} + \sqrt{-2}}$ が実数となるような $a$ の値を求め、そのときの $A$ ...

複素数実数条件式の整理
2025/4/15

$a$ は実数とする。$A = \frac{\sqrt{-3\sqrt{-2} + \sqrt{-2}}}{a + \sqrt{-3}}$ が実数となるとき、$a$ の値を求め、その時の $A$ の値...

複素数根号有理化式の計算
2025/4/15

2次関数 $y = 3x^2 - 6x - 2$ のグラフの頂点を求める問題です。

二次関数平方完成頂点グラフ
2025/4/15

aは定数とする。$|x-3| < 6$ が $|x-2| < a$ の必要条件になるための正の整数aの最大値を求める。

不等式絶対値必要条件数直線
2025/4/15