(1) $n$ を整数とするとき、積 $2\cos\frac{2n+1}{7}\pi \sin\frac{\pi}{7}$ を2つの三角関数の和または差の形に直す。 (2) (1) の結果を利用して、$\cos\frac{9}{7}\pi + \cos\frac{11}{7}\pi + \cos\frac{13}{7}\pi$ の値を求める。
2025/4/15
1. 問題の内容
(1) を整数とするとき、積 を2つの三角関数の和または差の形に直す。
(2) (1) の結果を利用して、 の値を求める。
2. 解き方の手順
(1) 積を和の公式を利用する。三角関数の積和の公式から、
を用いる。ここで 、 とすると、
(2) (1) の結果を利用して、 の値を計算する。
まず、とおく。
両辺に を掛けると、
(1) の結果を用いる。 とすると、
のとき
のとき
のとき
これらを足し合わせると、
よって
3. 最終的な答え
(1)
(2)