$\sin(3\alpha)$ を計算してください。解析学三角関数加法定理2倍角の公式三角関数の合成2025/4/151. 問題の内容sin(3α)\sin(3\alpha)sin(3α) を計算してください。2. 解き方の手順まず、三角関数の加法定理を利用して sin(3α)\sin(3\alpha)sin(3α) を変形します。sin(3α)=sin(2α+α)\sin(3\alpha) = \sin(2\alpha + \alpha)sin(3α)=sin(2α+α) と考えます。加法定理より、sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin Bsin(A+B)=sinAcosB+cosAsinBなので、sin(2α+α)=sin(2α)cos(α)+cos(2α)sin(α)\sin(2\alpha + \alpha) = \sin(2\alpha)\cos(\alpha) + \cos(2\alpha)\sin(\alpha)sin(2α+α)=sin(2α)cos(α)+cos(2α)sin(α)次に、sin(2α)\sin(2\alpha)sin(2α) と cos(2α)\cos(2\alpha)cos(2α) をそれぞれ2倍角の公式を用いて展開します。sin(2α)=2sin(α)cos(α)\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)sin(2α)=2sin(α)cos(α)cos(2α)=cos2(α)−sin2(α)\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)cos(2α)=cos2(α)−sin2(α)これらを代入すると、sin(3α)=(2sin(α)cos(α))cos(α)+(cos2(α)−sin2(α))sin(α)\sin(3\alpha) = (2\sin(\alpha)\cos(\alpha))\cos(\alpha) + (\cos^2(\alpha) - \sin^2(\alpha))\sin(\alpha)sin(3α)=(2sin(α)cos(α))cos(α)+(cos2(α)−sin2(α))sin(α)sin(3α)=2sin(α)cos2(α)+cos2(α)sin(α)−sin3(α)\sin(3\alpha) = 2\sin(\alpha)\cos^2(\alpha) + \cos^2(\alpha)\sin(\alpha) - \sin^3(\alpha)sin(3α)=2sin(α)cos2(α)+cos2(α)sin(α)−sin3(α)sin(3α)=3sin(α)cos2(α)−sin3(α)\sin(3\alpha) = 3\sin(\alpha)\cos^2(\alpha) - \sin^3(\alpha)sin(3α)=3sin(α)cos2(α)−sin3(α)さらに、cos2(α)=1−sin2(α)\cos^2(\alpha) = 1 - \sin^2(\alpha)cos2(α)=1−sin2(α) を用いて、全て sin(α)\sin(\alpha)sin(α) で表します。sin(3α)=3sin(α)(1−sin2(α))−sin3(α)\sin(3\alpha) = 3\sin(\alpha)(1 - \sin^2(\alpha)) - \sin^3(\alpha)sin(3α)=3sin(α)(1−sin2(α))−sin3(α)sin(3α)=3sin(α)−3sin3(α)−sin3(α)\sin(3\alpha) = 3\sin(\alpha) - 3\sin^3(\alpha) - \sin^3(\alpha)sin(3α)=3sin(α)−3sin3(α)−sin3(α)sin(3α)=3sin(α)−4sin3(α)\sin(3\alpha) = 3\sin(\alpha) - 4\sin^3(\alpha)sin(3α)=3sin(α)−4sin3(α)3. 最終的な答えsin(3α)=3sin(α)−4sin3(α)\sin(3\alpha) = 3\sin(\alpha) - 4\sin^3(\alpha)sin(3α)=3sin(α)−4sin3(α)