2桁の正の整数がある。その整数の一の位の数を6倍し、十の位の数を加えると24になる。また、一の位の数と十の位の数を入れ替えた整数は、元の整数より27小さい。元の整数を求めよ。

代数学連立方程式整数文章問題
2025/4/15

1. 問題の内容

2桁の正の整数がある。その整数の一の位の数を6倍し、十の位の数を加えると24になる。また、一の位の数と十の位の数を入れ替えた整数は、元の整数より27小さい。元の整数を求めよ。

2. 解き方の手順

元の整数の十の位の数を xx、一の位の数を yy とする。
元の整数は 10x+y10x + y と表せる。
問題文より、以下の2つの式が成り立つ。

1. 一の位の数を6倍し、十の位の数を加えると24になる: $x + 6y = 24$

2. 一の位と十の位を入れ替えた整数は、元の整数より27小さい: $10y + x = 10x + y - 27$

2番目の式を整理する。
10y+x=10x+y2710y + x = 10x + y - 27
9y9x=279y - 9x = -27
yx=3y - x = -3
x=y+3x = y + 3
この式を1番目の式に代入する。
(y+3)+6y=24(y + 3) + 6y = 24
7y+3=247y + 3 = 24
7y=217y = 21
y=3y = 3
x=y+3x = y + 3y=3y = 3 を代入すると、
x=3+3=6x = 3 + 3 = 6
したがって、元の整数は 10x+y=10×6+3=6310x + y = 10 \times 6 + 3 = 63 である。

3. 最終的な答え

63

「代数学」の関連問題

与えられた等差数列の一般項 $a_n$ と第8項を求める問題です。 (1) 初項が3、公差が2の等差数列 (2) 初項が7、公差が-4の等差数列

等差数列数列一般項公差初項
2025/4/15

問題は、与えられた初項と公差を持つ等差数列の最初の5項を求めることです。 (1) 初項が3で公差が5の等差数列 (2) 初項が6で公差が-7の等差数列

等差数列数列一般項
2025/4/15

与えられた等差数列の初項と公差から、第5項までの数列の要素を求める問題です。 (1) 初項が3、公差が5の等差数列の初項から第5項までを求める。 (2) 初項が6、公差が-7の等差数列の初項から第5項...

等差数列数列計算
2025/4/15

$\omega = \frac{-1+\sqrt{3}i}{2}$ を虚数単位 $i$ を用いて定義する。このとき、$\omega^2 + \omega + 1$、$(1-\omega+\omega^...

複素数二項定理組み合わせ式の計算
2025/4/15

次の各式を展開します。 3. $(x+6)(y+2)$ 4. $(x-4)(y-5)$ 5. $(2x+3)(y-7)$ 6. $(a-2)(6b+1)$ 7. $(2x-1)(3y-1)$ 8. $...

式の展開分配法則
2025/4/15

練習問題がいくつかあります。 まず、練習1では、式 $(a+c)(b+d)$ を展開する際に、一方の括弧を $M$ と置いて計算する手順を穴埋め形式で示します。 次に、練習2では、与えられた式を展開す...

式の展開多項式
2025/4/15

与えられた式を簡略化する問題です。式は次の通りです。 $\frac{a^3 - b^3}{a^3 + b^3} \div \frac{a^2 - 2ab + b^2}{a^2 - b^2}$

式の簡略化因数分解分数式代数
2025/4/15

与えられた式 $\frac{x^2-4}{x^2} \div \frac{x+2}{x^2-2x}$ を簡略化します。

代数式の簡略化因数分解分数式
2025/4/15

与えられた式を簡略化する問題です。 $$\frac{x^2 + x - 6}{x^2 - 6x + 9} \times \frac{3x - 9}{2x + 6}$$

式の簡略化因数分解分数式
2025/4/15

与えられた分数を簡約化する問題です。 分数式は、$\frac{2x^2 - 5x - 3}{4x^2 - 8x - 5}$ です。

分数因数分解式の簡約化
2025/4/15