2点A(2, 5, 4)と点B(4, 2, 10)の間の距離を求めます。

幾何学距離3次元空間座標
2025/3/14

1. 問題の内容

2点A(2, 5, 4)と点B(4, 2, 10)の間の距離を求めます。

2. 解き方の手順

2点間の距離の公式を使います。3次元空間における2点 A(x1,y1,z1)A(x_1, y_1, z_1)B(x2,y2,z2)B(x_2, y_2, z_2) の間の距離 dd は、以下の式で表されます。
d=(x2x1)2+(y2y1)2+(z2z1)2d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}
この公式に、A(2, 5, 4)とB(4, 2, 10)の座標を代入します。
d=(42)2+(25)2+(104)2d = \sqrt{(4 - 2)^2 + (2 - 5)^2 + (10 - 4)^2}
d=(2)2+(3)2+(6)2d = \sqrt{(2)^2 + (-3)^2 + (6)^2}
d=4+9+36d = \sqrt{4 + 9 + 36}
d=49d = \sqrt{49}
d=7d = 7

3. 最終的な答え

7

「幾何学」の関連問題

与えられた問題は、以下の6つの小問から構成されています。 (1) 3点 A(1,-1), B(-2,-3), C(4,a) が一直線上にあるとき、定数 $a$ の値を求めよ。 (2) 3点 A(1,2...

直線傾き直線の方程式交点
2025/6/9

2つのベクトル $\vec{a} = (\cosh t, \sinh t)$ と $\vec{b} = (\sinh t, \cosh t)$ によって張られる平行四辺形の面積を求めます。

ベクトル平行四辺形面積行列式双曲線関数
2025/6/9

与えられた条件を満たす直線の方程式を求める問題です。条件は、点と傾き、あるいは2点の座標で与えられています。

直線方程式座標傾きx軸y軸
2025/6/9

画像に表示されている点と線を繋いだ図形のパターンに関する問題です。81から86までの各行について、1から5までの数字に対応する図形が与えられています。問題文は与えられていませんが、おそらく、これらの図...

図形パターン認識規則性視覚的推論
2025/6/9

空間内の3つのベクトル $\vec{a}, \vec{b}, \vec{c}$ があり、$|\vec{a}|=6, |\vec{c}|=1$, $\vec{a}$ と $\vec{b}$ のなす角は ...

ベクトル内積空間ベクトルベクトルのなす角
2025/6/9

問題は、三角形ABCにおいて角Aが鈍角である場合に、余弦定理が成り立つことを、図に基づいて確認することです。具体的には、$BC^2 = CD^2 + BD^2$、$CD^2 = (b \sin A)^...

余弦定理三角形三角関数鈍角図形
2025/6/9

座標空間内の2点 $A(0, -1, 1)$ と $B(-1, 0, 0)$ を結ぶ線分 $AB$ を、$z$ 軸の周りに1回転させてできる曲面と、平面 $z=0$ および $z=1$ によって囲まれ...

空間図形回転体体積積分
2025/6/9

直角三角形ABCにおいて、以下のベクトルの内積を求めます。 (1) $\overrightarrow{AB} \cdot \overrightarrow{AC}$ (2) $\overrightarr...

ベクトル内積直角三角形三角比
2025/6/9

問題1: 原点O、点P(3,2)、点Q(2,1)が与えられたとき、ベクトルOPとベクトルOQの内積と、線分OPとOQでできる平行四辺形の面積を求めます。 問題2: 原点O、点P(3,2)、点R(2,1...

ベクトル内積平行四辺形直交直線の式
2025/6/9

与えられた図において、ベクトル $\vec{a} - \vec{b}$ を図示すると、ア、イ、ウのいずれになるかを答える問題です。

ベクトルベクトルの減算図示
2025/6/9