三角形OABにおいて、辺OAの中点をM、辺OBの中点をNとする。線分ANとBMの交点をPとするとき、ベクトルOPをベクトルOAとベクトルOBを用いて表す問題です。

幾何学ベクトル三角形重心内分点線形代数
2025/3/14

1. 問題の内容

三角形OABにおいて、辺OAの中点をM、辺OBの中点をNとする。線分ANとBMの交点をPとするとき、ベクトルOPをベクトルOAとベクトルOBを用いて表す問題です。

2. 解き方の手順

Pは三角形OABの内部の点であり、ANとBMの交点なので、Pは三角形OABの重心であることがわかります。
重心は、各中線を2:1に内分する点であるため、
OP\vec{OP}OA\vec{OA}OB\vec{OB}で表すことができます。
OP=13OA+13OB+13OO\vec{OP} = \frac{1}{3} \vec{OA} + \frac{1}{3}\vec{OB} + \frac{1}{3} \vec{OO} は明らかな間違いです。
線分ANを2:1に内分する点であるから、
OP=13OA+23ON\vec{OP} = \frac{1}{3} \vec{OA} + \frac{2}{3} \vec{ON}
NはOBの中点なので、ON=12OB\vec{ON} = \frac{1}{2}\vec{OB}
したがって、
OP=13OA+2312OB\vec{OP} = \frac{1}{3} \vec{OA} + \frac{2}{3} \cdot \frac{1}{2} \vec{OB}
OP=13OA+13OB\vec{OP} = \frac{1}{3} \vec{OA} + \frac{1}{3} \vec{OB}

3. 最終的な答え

OP=13OA+13OB\vec{OP} = \frac{1}{3} \vec{OA} + \frac{1}{3} \vec{OB}

「幾何学」の関連問題

2つの直線がなす鋭角を求める問題です。 (1) $y = \sqrt{3}x$ と $y=x$ のなす角 (2) $y = -x$ と $y = \frac{1}{\sqrt{3}}x$ のなす角

直線角度三角関数
2025/6/2

次の3つの直線がx軸の正の方向となす角 $\theta$ を求める問題です。 (1) $y = -x$ (2) $x - \sqrt{3}y = 0$ (3) $y = -\sqrt{3}x + 1$

直線傾き三角関数角度tan
2025/6/2

$\sin \theta = \frac{\sqrt{5}}{3}$ であり、$90^\circ < \theta < 180^\circ$ のとき、以下の値を求めよ。 (1) $\sin(180^\...

三角関数三角比角度変換
2025/6/2

$\triangle OAB$において、辺$OA$を$2:3$に内分する点を$C$、辺$OB$を$2:1$に内分する点を$D$とします。$AD$と$BC$の交点を$P$とするとき、$\overrigh...

ベクトル内分点一次独立
2025/6/2

$0^\circ \leq \theta \leq 180^\circ$ のとき、次の不等式を満たす$\theta$の値の範囲を求めます。 (1) $\sin\theta < \frac{\sqrt{...

三角比三角関数不等式角度
2025/6/2

平行四辺形ABCDにおいて、$AB=3$, $AD=2$, $\angle BAD = \frac{\pi}{3}$のとき、以下の問いに答える。 (1) $\overrightarrow{AD} \c...

ベクトル内積平行四辺形幾何ベクトル
2025/6/2

座標平面上に2点A(1, 3), B(3, 7)があり、直線 $l: y = 2x - 4$ がある。 (1) 直線 $l$ に関して点Aと対称な点Cの座標を求める。 (2) 直線BCの方程式を求める...

座標平面対称点直線の方程式距離最小値三角形の面積
2025/6/2

点(1, 1)を通り、ベクトル $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ と平行な直線の式を $y = ax + b$ と表すとき、$a$と$b$の値を求める問題...

直線ベクトル傾き方程式
2025/6/2

三角形ABCにおいて、$AB=3$, $BC=7$, $\angle BAC = 120^\circ$ である。 (1) 辺ACの長さを求めよ。また、三角形ABCの外接円の半径をRとすると、Rを求めよ...

三角形余弦定理正弦定理外接円内接円面積
2025/6/2

$|\vec{a}| = \sqrt{2^2 + 1^2} = \sqrt{5}$

ベクトルベクトルの内積ベクトルの大きさ内分点平行四辺形図形
2025/6/2