与えられた連立方程式 $Ma = T$ $ma = mg - T$ を、定数 $m, M, g$を用いて、$T$と$a$を求める問題です。

応用数学連立方程式物理力学線形代数
2025/4/17

1. 問題の内容

与えられた連立方程式
Ma=TMa = T
ma=mgTma = mg - T
を、定数 m,M,gm, M, gを用いて、TTaaを求める問題です。

2. 解き方の手順

まず、Ma=TMa=Tma=mgTma=mg-Tに代入します。
すると、ma=mgMama = mg - Maとなります。
次に、aaについて解きます。
ma+Ma=mgma + Ma = mg
(m+M)a=mg(m+M)a = mg
a=mgm+Ma = \frac{mg}{m+M}
これで、aaが求まりました。
次に、TTを求めます。T=MaT = Maなので、
T=Mmgm+MT = M \cdot \frac{mg}{m+M}
T=Mmgm+MT = \frac{Mmg}{m+M}
これで、TTも求まりました。

3. 最終的な答え

a=mgm+Ma = \frac{mg}{m+M}
T=Mmgm+MT = \frac{Mmg}{m+M}

「応用数学」の関連問題

水面上の2点A, Bを波源とする水面波の干渉に関する問題である。 (1) 波の波長を求める。 (2) 波の速さが1.0 m/sのときの波源の振動数を求める。 (3) 波源Bの振動を波源Aより半周期遅ら...

波動干渉波長振動数位相近似
2025/4/19

問題は、ベクトル関数 $A(t)$, $B(t)$ とスカラー関数 $k(t)$ に関する2つの関係式(ライプニッツ・ルール)が成り立つことを示すこと、および、$A^2 = \text{const.}...

ベクトル解析微分ライプニッツ則内積幾何学的意味
2025/4/19

水平面と角 $\beta$ をなす斜面の最下点から、斜面と角 $\alpha$ をなす方向に初速 $v_0$ で物体を投げ上げたとき、斜面上の最大到達距離を得るための角 $\alpha$ を求めよ。

力学運動最大到達距離微分三角関数
2025/4/19

水平面と角 $\beta$ をなす斜面の最下点から、斜面と角 $\alpha$ をなす方向に初速 $v_0$ で物体を投げた時、斜面上での最大到達距離を得るための角 $\alpha$ を求めよ。

力学運動方程式最大到達距離微分三角関数
2025/4/19

与えられた3つの式が等しいことを確認、または変形していく問題です。 $y=0.20 \sin\pi(5.0t - 0.10x)$ $=0.20 \sin 2\pi(2.5t - 0.050x)$ $=...

三角関数波動物理
2025/4/18

与えられた正弦波の式 $y = 0.20 \sin \pi(5.0t - 0.10x)$ を変形し、一般的な正弦波の式 $y = A \sin 2\pi (\frac{t}{T} - \frac{x}...

波動正弦波振幅周期波長振動数波の速さ
2025/4/18

$x$軸上を正の向きに進む正弦波の、座標 $x$ [m] の点の変位 $y$ [m] が $y = 0.20 \sin \pi(5.0t - 0.10x)$ で表されるとき、この波の振幅 $A$ [m...

波動正弦波振幅周期波長振動数波の速さ物理
2025/4/18

$x$軸上を正の向きに進む波長が6.0mの正弦波がある。ある点における時刻$t$ [s]での変位$y$ [m]が $y = 2.0 \cos(8.0 \pi t)$ で表される。 (1) この波の周期...

波動正弦波周期波の速さ波長
2025/4/18

$x$軸上を正の向きに進む正弦波の、座標 $x$ [m] の点の時刻 $t$ [s] における変位 $y$ [m] が $y = 0.20 \sin \pi (5.0t - 0.10x)$ で表される...

正弦波物理振幅周期波長振動数速さ
2025/4/18

細胞外のナトリウムイオン濃度が145 mM、細胞内のナトリウムイオン濃度が10 mMであるとき、ナトリウムイオンの平衡電位 $V$ をネルンストの式を使って計算する問題です。ネルンストの式は、$V =...

ネルンストの式対数生化学イオン濃度
2025/4/18