$\frac{4}{75}S_n = 2\left(\frac{5}{16} - \frac{4n+5}{16} \cdot \frac{1}{5^n}\right) - \frac{1}{4}\left(1-\frac{1}{5^n}\right) - \frac{n^2}{5^{n+1}}$を計算し、$S_n$を求める。解析学級数数列計算2025/4/171. 問題の内容475Sn=2(516−4n+516⋅15n)−14(1−15n)−n25n+1\frac{4}{75}S_n = 2\left(\frac{5}{16} - \frac{4n+5}{16} \cdot \frac{1}{5^n}\right) - \frac{1}{4}\left(1-\frac{1}{5^n}\right) - \frac{n^2}{5^{n+1}}754Sn=2(165−164n+5⋅5n1)−41(1−5n1)−5n+1n2を計算し、SnS_nSnを求める。2. 解き方の手順まず、与えられた式を整理します。475Sn=2(516−4n+516⋅15n)−14(1−15n)−n25n+1\frac{4}{75}S_n = 2\left(\frac{5}{16} - \frac{4n+5}{16} \cdot \frac{1}{5^n}\right) - \frac{1}{4}\left(1-\frac{1}{5^n}\right) - \frac{n^2}{5^{n+1}}754Sn=2(165−164n+5⋅5n1)−41(1−5n1)−5n+1n2475Sn=1016−8n+1016⋅15n−14+14⋅15n−n25n+1\frac{4}{75}S_n = \frac{10}{16} - \frac{8n+10}{16} \cdot \frac{1}{5^n} - \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{5^n} - \frac{n^2}{5^{n+1}}754Sn=1610−168n+10⋅5n1−41+41⋅5n1−5n+1n2475Sn=58−14−8n+1016⋅15n+14⋅15n−n25n+1\frac{4}{75}S_n = \frac{5}{8} - \frac{1}{4} - \frac{8n+10}{16} \cdot \frac{1}{5^n} + \frac{1}{4} \cdot \frac{1}{5^n} - \frac{n^2}{5^{n+1}}754Sn=85−41−168n+10⋅5n1+41⋅5n1−5n+1n2475Sn=58−28−8n+1016⋅5n+416⋅5n−n25n+1\frac{4}{75}S_n = \frac{5}{8} - \frac{2}{8} - \frac{8n+10}{16 \cdot 5^n} + \frac{4}{16 \cdot 5^n} - \frac{n^2}{5^{n+1}}754Sn=85−82−16⋅5n8n+10+16⋅5n4−5n+1n2475Sn=38−8n+10−416⋅5n−n25n+1\frac{4}{75}S_n = \frac{3}{8} - \frac{8n+10 - 4}{16 \cdot 5^n} - \frac{n^2}{5^{n+1}}754Sn=83−16⋅5n8n+10−4−5n+1n2475Sn=38−8n+616⋅5n−n25n+1\frac{4}{75}S_n = \frac{3}{8} - \frac{8n+6}{16 \cdot 5^n} - \frac{n^2}{5^{n+1}}754Sn=83−16⋅5n8n+6−5n+1n2475Sn=38−4n+38⋅5n−n25n+1\frac{4}{75}S_n = \frac{3}{8} - \frac{4n+3}{8 \cdot 5^n} - \frac{n^2}{5^{n+1}}754Sn=83−8⋅5n4n+3−5n+1n2475Sn=38−4n+38⋅5n−n25⋅5n\frac{4}{75}S_n = \frac{3}{8} - \frac{4n+3}{8 \cdot 5^n} - \frac{n^2}{5 \cdot 5^n}754Sn=83−8⋅5n4n+3−5⋅5nn2475Sn=38−5(4n+3)+8n240⋅5n\frac{4}{75}S_n = \frac{3}{8} - \frac{5(4n+3) + 8n^2}{40 \cdot 5^n}754Sn=83−40⋅5n5(4n+3)+8n2475Sn=38−20n+15+8n240⋅5n\frac{4}{75}S_n = \frac{3}{8} - \frac{20n+15+8n^2}{40 \cdot 5^n}754Sn=83−40⋅5n20n+15+8n2475Sn=38−8n2+20n+1540⋅5n\frac{4}{75}S_n = \frac{3}{8} - \frac{8n^2+20n+15}{40 \cdot 5^n}754Sn=83−40⋅5n8n2+20n+15Sn=754(38−8n2+20n+1540⋅5n)S_n = \frac{75}{4} \left( \frac{3}{8} - \frac{8n^2+20n+15}{40 \cdot 5^n} \right)Sn=475(83−40⋅5n8n2+20n+15)Sn=22532−75(8n2+20n+15)160⋅5nS_n = \frac{225}{32} - \frac{75(8n^2+20n+15)}{160 \cdot 5^n}Sn=32225−160⋅5n75(8n2+20n+15)Sn=22532−15(8n2+20n+15)32⋅5nS_n = \frac{225}{32} - \frac{15(8n^2+20n+15)}{32 \cdot 5^n}Sn=32225−32⋅5n15(8n2+20n+15)Sn=22532−120n2+300n+22532⋅5nS_n = \frac{225}{32} - \frac{120n^2+300n+225}{32 \cdot 5^n}Sn=32225−32⋅5n120n2+300n+225Sn=225⋅5n−(120n2+300n+225)32⋅5nS_n = \frac{225 \cdot 5^n - (120n^2+300n+225)}{32 \cdot 5^n}Sn=32⋅5n225⋅5n−(120n2+300n+225)Sn=225(5n−1)−(120n2+300n)32⋅5nS_n = \frac{225 (5^n - 1) - (120n^2+300n)}{32 \cdot 5^n}Sn=32⋅5n225(5n−1)−(120n2+300n)Sn=225(5n−1)−60n(2n+5)32⋅5nS_n = \frac{225 (5^n - 1) - 60n(2n+5)}{32 \cdot 5^n}Sn=32⋅5n225(5n−1)−60n(2n+5)3. 最終的な答えSn=22532−15(8n2+20n+15)32⋅5nS_n = \frac{225}{32} - \frac{15(8n^2+20n+15)}{32 \cdot 5^n}Sn=32225−32⋅5n15(8n2+20n+15)あるいはSn=225(5n−1)−60n(2n+5)32⋅5nS_n = \frac{225 (5^n - 1) - 60n(2n+5)}{32 \cdot 5^n}Sn=32⋅5n225(5n−1)−60n(2n+5)