問題は、与えられた極限の公式を利用して、$e^x$ と $\log x$ の1階微分を求めることです。ただし、$x > 0$ が条件として与えられています。

解析学微分指数関数対数関数極限
2025/4/19

1. 問題の内容

問題は、与えられた極限の公式を利用して、exe^xlogx\log x の1階微分を求めることです。ただし、x>0x > 0 が条件として与えられています。

2. 解き方の手順

(1) exe^x の微分
与えられた極限の式(4) limh0eh1h=1\lim_{h \to 0} \frac{e^h - 1}{h} = 1 を利用します。
f(x)=exf(x) = e^x とすると、その微分は定義より
f(x)=limh0f(x+h)f(x)h=limh0ex+hexhf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}
=limh0exehexh=exlimh0eh1h= \lim_{h \to 0} \frac{e^x e^h - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h}
=ex1=ex= e^x \cdot 1 = e^x
(2) logx\log x の微分
y=logxy = \log x とすると、x=eyx = e^y となります。
両辺を xx で微分すると、
1=ddxey=eydydx1 = \frac{d}{dx} e^y = e^y \frac{dy}{dx}
したがって、dydx=1ey=1x\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{x}
よって、ddxlogx=1x\frac{d}{dx} \log x = \frac{1}{x}

3. 最終的な答え

exe^x の1階微分: exe^x
logx\log x の1階微分: 1x\frac{1}{x}

「解析学」の関連問題

$\int_{a}^{x} f(t) dt = x^2 - 4x + a$ を満たす関数 $f(x)$ と定数 $a$ の値を求めよ。

積分積分方程式微分定積分関数の決定
2025/4/20

与えられた画像には、電子物理数学の演習問題が5問含まれています。以下に各問題の内容を要約します。 * 問題1: 関数 $f(x, y) = \frac{x-y}{x+y}$ の偏導関数 $f_x$...

偏導関数全微分連鎖律偏微分方程式
2025/4/20

$\frac{1}{\sqrt{1+x^2}} \approx 1 - \frac{x^2}{2}$ を示し、さらに、右辺と左辺の差が5%になるまでの範囲で数値計算し、グラフに描け。

テイラー展開二項定理近似数値計算グラフ
2025/4/20

$0 \le x \le 1$ のとき、関数 $f(x) = -\frac{1}{3}x^3 + \frac{1-b}{3}x^2$ について、$0 < b < 1$ とする。このとき、$f(x)$ ...

微分最大値最小値関数のグラフ
2025/4/20

関数 $f(x) = 4x^3 - 30x^2 + 48x - 13$ の $0 \le x \le 5$ における最大値と最小値の差を求める問題です。

微分最大値最小値関数の増減三次関数
2025/4/20

(1) 関数 $f(x) = -x^3 + 12x - 17$ の極大値を求める。 (2) 正の定数 $a, b$ に対して、関数 $f(x) = x^3 - 3a^2x + b$ の極大値と極小値を...

微分極値関数の増減
2025/4/20

関数 $f(x) = x^3 - 2x^2 - x + 1$ について、$x$ が $1$ から $2$ まで変化するときの平均変化率が、微分係数 $f'(a)$ と等しいとき、定数 $a$ の値を求...

微分平均変化率導関数二次方程式
2025/4/20

与えられた曲線または直線で囲まれた領域の面積 $S$ を求める問題です。3つの小問があり、それぞれ以下のように定義されています。 (1) $y=e^{2x}$, $y=2e^{-x}+3$, $x=0...

積分面積定積分楕円パラメータ表示
2025/4/20

関数 $y = x^2$ において、$x$ の値が1から4まで増加するときの変化の割合を求める問題です。

変化の割合関数二次関数
2025/4/20

(1) $0 < \alpha < \frac{\pi}{2}$, $\frac{\pi}{2} < \beta < \pi$, $\sin \alpha = \frac{\sqrt{15}}{5}$...

三角関数加法定理倍角の公式三角関数の相互関係
2025/4/20