広義積分 $I = \int_0^\infty \frac{\sin(x)}{x} dx$ の値を求めます。解析学広義積分パラメータ積分部分積分三角関数arctan2025/4/191. 問題の内容広義積分 I=∫0∞sin(x)xdxI = \int_0^\infty \frac{\sin(x)}{x} dxI=∫0∞xsin(x)dx の値を求めます。2. 解き方の手順この積分を評価するために、パラメータ積分を導入します。I(a)=∫0∞e−axsin(x)xdxI(a) = \int_0^\infty e^{-ax} \frac{\sin(x)}{x} dxI(a)=∫0∞e−axxsin(x)dx (ただし a≥0a \geq 0a≥0) と定義します。求めたい値は I(0)I(0)I(0) です。I(a)I(a)I(a) を aaa で微分します。dIda=dda∫0∞e−axsin(x)xdx=∫0∞∂∂a(e−axsin(x)x)dx\frac{dI}{da} = \frac{d}{da} \int_0^\infty e^{-ax} \frac{\sin(x)}{x} dx = \int_0^\infty \frac{\partial}{\partial a} (e^{-ax} \frac{\sin(x)}{x}) dxdadI=dad∫0∞e−axxsin(x)dx=∫0∞∂a∂(e−axxsin(x))dxdIda=∫0∞(−x)e−axsin(x)xdx=−∫0∞e−axsin(x)dx\frac{dI}{da} = \int_0^\infty (-x) e^{-ax} \frac{\sin(x)}{x} dx = - \int_0^\infty e^{-ax} \sin(x) dxdadI=∫0∞(−x)e−axxsin(x)dx=−∫0∞e−axsin(x)dxJ=∫0∞e−axsin(x)dxJ = \int_0^\infty e^{-ax} \sin(x) dxJ=∫0∞e−axsin(x)dx を計算します。部分積分を2回行います。u=sin(x)u = \sin(x)u=sin(x), dv=e−axdxdv = e^{-ax}dxdv=e−axdx とすると、du=cos(x)dxdu = \cos(x)dxdu=cos(x)dx, v=−1ae−axv = -\frac{1}{a} e^{-ax}v=−a1e−ax となり、J=[−1ae−axsin(x)]0∞+1a∫0∞e−axcos(x)dx=0+1a∫0∞e−axcos(x)dxJ = [-\frac{1}{a} e^{-ax} \sin(x)]_0^\infty + \frac{1}{a} \int_0^\infty e^{-ax} \cos(x) dx = 0 + \frac{1}{a} \int_0^\infty e^{-ax} \cos(x) dxJ=[−a1e−axsin(x)]0∞+a1∫0∞e−axcos(x)dx=0+a1∫0∞e−axcos(x)dxu=cos(x)u = \cos(x)u=cos(x), dv=e−axdxdv = e^{-ax}dxdv=e−axdx とすると、du=−sin(x)dxdu = -\sin(x)dxdu=−sin(x)dx, v=−1ae−axv = -\frac{1}{a} e^{-ax}v=−a1e−ax となり、J=1a([−1ae−axcos(x)]0∞−1a∫0∞e−axsin(x)dx)=1a(1a−1aJ)J = \frac{1}{a} ([-\frac{1}{a} e^{-ax} \cos(x)]_0^\infty - \frac{1}{a} \int_0^\infty e^{-ax} \sin(x) dx) = \frac{1}{a} (\frac{1}{a} - \frac{1}{a} J)J=a1([−a1e−axcos(x)]0∞−a1∫0∞e−axsin(x)dx)=a1(a1−a1J)J=1a2−1a2JJ = \frac{1}{a^2} - \frac{1}{a^2} JJ=a21−a21J(1+1a2)J=1a2(1+\frac{1}{a^2})J = \frac{1}{a^2}(1+a21)J=a21J=1a2+1J = \frac{1}{a^2+1}J=a2+11したがって、dIda=−∫0∞e−axsin(x)dx=−1a2+1\frac{dI}{da} = - \int_0^\infty e^{-ax} \sin(x) dx = - \frac{1}{a^2+1}dadI=−∫0∞e−axsin(x)dx=−a2+11両辺を aaa で積分します。I(a)=−∫1a2+1da=−arctan(a)+CI(a) = - \int \frac{1}{a^2+1} da = - \arctan(a) + CI(a)=−∫a2+11da=−arctan(a)+Ca→∞a \to \inftya→∞ のとき、I(a)→0I(a) \to 0I(a)→0 なので、0=−arctan(∞)+C=−π2+C0 = - \arctan(\infty) + C = - \frac{\pi}{2} + C0=−arctan(∞)+C=−2π+Cしたがって、C=π2C = \frac{\pi}{2}C=2πI(a)=−arctan(a)+π2I(a) = - \arctan(a) + \frac{\pi}{2}I(a)=−arctan(a)+2π求める値は I(0)I(0)I(0) なので、I(0)=−arctan(0)+π2=0+π2=π2I(0) = - \arctan(0) + \frac{\pi}{2} = 0 + \frac{\pi}{2} = \frac{\pi}{2}I(0)=−arctan(0)+2π=0+2π=2π3. 最終的な答えπ2\frac{\pi}{2}2π