$(x + \frac{1}{3})^2$ を展開してください。

代数学展開二項定理代数式
2025/4/18

1. 問題の内容

(x+13)2(x + \frac{1}{3})^2 を展開してください。

2. 解き方の手順

(a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2 という公式を利用して展開します。
a=xa = xb=13b = \frac{1}{3} とすると、
(x+13)2=x2+2x13+(13)2(x + \frac{1}{3})^2 = x^2 + 2 \cdot x \cdot \frac{1}{3} + (\frac{1}{3})^2
=x2+23x+19= x^2 + \frac{2}{3}x + \frac{1}{9}

3. 最終的な答え

x2+23x+19x^2 + \frac{2}{3}x + \frac{1}{9}

「代数学」の関連問題

与えられた式 $ab(a-b)+bc(b-c)+ca(c-a)$ を因数分解します。

因数分解式の展開多項式
2025/4/19

$x^2 + (3y - 2)x + (2y^2 - 3y + 1)$

因数分解二次式多変数
2025/4/19

与えられた2つの式を因数分解します。 (1) $x^2+xy-4x-y+3$ (2) $x^2+ax-3a-9$

因数分解多項式たすき掛け
2025/4/19

与えられた2次不等式 $x^2 + 4x + 6 < 0$ の解を求める問題です。まず、対応する2次方程式 $x^2 + 4x + 6 = 0$ の解を求め、その結果を使って不等式の解を求めます。

二次不等式判別式複素数
2025/4/19

2次関数 $y = x^2 + 2x$ の $-2 \le x \le 1$ における最大値と最小値を求め、空欄を埋める問題です。

二次関数最大値最小値平方完成定義域
2025/4/19

与えられた2つの命題の対偶を求める問題です。 (1) $x = 6 \Rightarrow x^2 = 36$ (2) $n$ は4の倍数 $\Rightarrow$ $n$ は2の倍数

命題対偶論理
2025/4/19

与えられた2つの命題の対偶を求める問題です。 (1) $x = 6 \implies x^2 = 36$ (2) $n$は4の倍数 $\implies n$は2の倍数

命題対偶論理条件
2025/4/19

与えられた条件が、別の条件を満たすための十分条件、必要条件、または必要十分条件のどれに当てはまるかを判断する問題です。

命題必要条件十分条件必要十分条件不等式方程式
2025/4/19

次の命題について、「十分条件」、「必要条件」、「必要十分条件」のいずれであるかを判断する問題です。 (1) $x=4$ は $x^2=16$ であるためのア条件。 (2) $x>1$ は $x>2$ ...

命題必要条件十分条件必要十分条件論理
2025/4/19

与えられた分数の式を簡略化します。問題は次の通りです。 $\frac{1 + \frac{2-x^2}{x(x+2)}}{\frac{1}{x} - \frac{1}{x+2}}$

分数式式の簡略化代数
2025/4/19