与えられた関数 $x$ について、$\frac{dy}{dx}$ を $x$ の式で表す問題です。具体的には、以下の5つの関数について $\frac{dy}{dx}$ を計算します。 (1) $x = -3y^2 + y$ (2) $x = (2-y)^3 + 3$ (3) $x = \frac{1}{y+1}$ (4) $x = \frac{2}{y^2}$ (5) $x = \sqrt{2y-1}$
2025/4/19
1. 問題の内容
与えられた関数 について、 を の式で表す問題です。具体的には、以下の5つの関数について を計算します。
(1)
(2)
(3)
(4)
(5)
2. 解き方の手順
(1) の場合
まず、 を計算します。
次に、 は の逆数であるため、
を変形し、 を で表すことは難しいので、このままの形で解答とします。
与えられた解答例はを用いています。
(2) の場合
まず、 と変形します。
次に、両辺の3乗根を取ると、 となります。
したがって、 となります。
を計算します。
(3) の場合
より、 となります。
したがって、 となります。
を計算します。
(4) の場合
より、 となります。
を計算します。
ここで より 。したがって、
より だから、
(5) の場合
より、 となります。
したがって、 となります。
を計算します。
3. 最終的な答え
(1)
(2)
(3)
(4)
(5)