与えられた数式を計算します。数式は以下の通りです。 $\frac{\log_a 12 + \log_a 27}{\log_a 18}$

代数学対数対数の性質底の変換公式計算
2025/3/16

1. 問題の内容

与えられた数式を計算します。数式は以下の通りです。
loga12+loga27loga18\frac{\log_a 12 + \log_a 27}{\log_a 18}

2. 解き方の手順

まず、対数の性質 logax+logay=loga(xy)\log_a x + \log_a y = \log_a (xy) を使って、分子をまとめます。
loga12+loga27=loga(12×27)=loga324\log_a 12 + \log_a 27 = \log_a (12 \times 27) = \log_a 324
したがって、与えられた式は
loga324loga18\frac{\log_a 324}{\log_a 18}
となります。
ここで、底の変換公式 logaxlogay=logyx\frac{\log_a x}{\log_a y} = \log_y x を使います。
loga324loga18=log18324\frac{\log_a 324}{\log_a 18} = \log_{18} 324
324=182324 = 18^2 なので、
log18324=log18182=2log1818=2×1=2\log_{18} 324 = \log_{18} 18^2 = 2 \log_{18} 18 = 2 \times 1 = 2

3. 最終的な答え

2

「代数学」の関連問題

行列 $C$ が与えられています。この行列の逆行列を求める問題です。 $C = \begin{bmatrix} 2 & 1 & -3 \\ -1 & 1 & 2 \\ 3 & 0 & -5 \end{...

線形代数行列逆行列行列式
2025/6/8

2次関数 $y = -x^2 - 2mx - 2m - 3$ のグラフについて、以下の条件を満たす定数 $m$ の値の範囲を求める。 (1) $x$ 軸の $x > -4$ の部分と、異なる2点で交わ...

二次関数グラフ判別式不等式
2025/6/8

$V$ はベクトル空間であり、$W_1$ と $W_2$ は $V$ の部分空間である。$W_1 \cup W_2$ が $V$ の部分空間ならば、$W_1 \subseteq W_2$ または $W...

線形代数ベクトル空間部分空間証明
2025/6/8

関数 $y = (-x^2 + 2x)^2 - 4(-x^2 + 2x) + 6$ が与えられている。$t = -x^2 + 2x$ とおいたとき、$t$ のとりうる値の範囲を求める。

二次関数最大値平方完成関数のグラフ
2025/6/8

(a) 与えられた連立一次方程式 $\begin{cases} 3x + 5y = 1 \\ x + 2y = -1 \end{cases}$ を、2x2 行列 $A$ を用いて $Ax = b$ の...

線形代数連立一次方程式行列逆行列
2025/6/8

与えられた式 $\sqrt{(\pi-2)^2} + \sqrt{(\pi-3)^2} + \sqrt{(\pi-4)^2}$ を最も整理された形で表す。ただし、$\pi$ は円周率である。

絶対値式の計算数式整理円周率
2025/6/8

複素数の式 $\frac{\sqrt{3}+i}{\sqrt{3}-i} - \frac{\sqrt{3}-i}{\sqrt{3}+i}$ を計算します。

複素数複素数の計算有理化
2025/6/8

平面上の点 $(x, y)$ を縦ベクトル $\mathbf{a} = \begin{pmatrix} x \\ y \end{pmatrix}$ で表す。行列 $A = \begin{pmatrix...

線形代数行列線形変換行列の積線対称変換図形
2025/6/8

平面 R^2 上の点 $(x, y)$ をベクトル $\mathbf{a} = \begin{pmatrix} x \\ y \end{pmatrix}$ と表す。行列 $A = \begin{pma...

線形代数行列線形変換線対称変換行列の積幾何学
2025/6/8

与えられた4つの方程式から、$a, b, c, d$の値を求める問題です。 方程式は以下の通りです。 $3a + 2b + c = 0$ ... (1) $12a + 4b + c = 0$ ......

連立方程式線形方程式未知数の解
2025/6/8