与えられた式 $(a+b)c^2 + (b+c)a^2 + (c+a)b^2 + 2abc$ を因数分解します。

代数学因数分解多項式
2025/4/20

1. 問題の内容

与えられた式 (a+b)c2+(b+c)a2+(c+a)b2+2abc(a+b)c^2 + (b+c)a^2 + (c+a)b^2 + 2abc を因数分解します。

2. 解き方の手順

まず、式を展開します。
(a+b)c2+(b+c)a2+(c+a)b2+2abc=ac2+bc2+a2b+a2c+b2c+ab2+2abc(a+b)c^2 + (b+c)a^2 + (c+a)b^2 + 2abc = ac^2 + bc^2 + a^2b + a^2c + b^2c + ab^2 + 2abc
次に、式を整理します。
ac2+bc2+a2b+a2c+b2c+ab2+2abc=a2b+a2c+ab2+b2c+ac2+bc2+2abcac^2 + bc^2 + a^2b + a^2c + b^2c + ab^2 + 2abc = a^2b + a^2c + ab^2 + b^2c + ac^2 + bc^2 + 2abc
aa について整理します。
a2(b+c)+a(b2+2bc+c2)+bc(b+c)=a2(b+c)+a(b+c)2+bc(b+c)a^2(b+c) + a(b^2+2bc+c^2) + bc(b+c) = a^2(b+c) + a(b+c)^2 + bc(b+c)
(b+c)(b+c) でくくります。
(b+c)(a2+a(b+c)+bc)=(b+c)(a2+ab+ac+bc)(b+c)(a^2 + a(b+c) + bc) = (b+c)(a^2 + ab + ac + bc)
さらに因数分解します。
(b+c)[a(a+b)+c(a+b)]=(b+c)(a+b)(a+c)(b+c)[a(a+b) + c(a+b)] = (b+c)(a+b)(a+c)
よって、(a+b)(b+c)(c+a)(a+b)(b+c)(c+a) となります。

3. 最終的な答え

(a+b)(b+c)(c+a)(a+b)(b+c)(c+a)

「代数学」の関連問題

連続する3つの偶数があり、それらの和が90より大きく100より小さいとき、これらの3つの偶数の積を求めます。

不等式偶数方程式整数
2025/4/20

与えられた6つの式の分母を有理化する。

分母の有理化平方根の計算式の計算
2025/4/20

与えられた数式の分母を有理化する問題です。問題は(3), (4), (5), (6) の4つです。 (3) $\frac{2\sqrt{2}}{3-\sqrt{5}}$ (4) $\frac{1}{\...

有理化根号分母の有理化計算
2025/4/20

以下の5つの式を計算します。 (1) $\sqrt{5}(3\sqrt{10}-2\sqrt{5})$ (2) $(2\sqrt{2}-\sqrt{3})(4\sqrt{2}+5\sq...

平方根有理化根号の計算分配法則公式
2025/4/20

等差数列をなす3つの数があり、その和が15、積が80である。この3つの数を求めなさい。

等差数列方程式数列
2025/4/20

与えられた6つの式を因数分解する問題です。 (1) $2a^2 - 7ab + 6b^2$ (2) $3a^2 - 4ab - 4b^2$ (3) $5x^2 + 7xy - 6y^2$ (4) $1...

因数分解多項式
2025/4/20

与えられた4つの式を因数分解する問題です。 (1) $x(x+1) + 2(x+1)$ (2) $(a-1)x - (a-1)$ (3) $a(x-y) - 2(y-x)$ (4) $2a(a-3b)...

因数分解多項式共通因数たすき掛け
2025/4/20

体育館に生徒が入る際、1つの長椅子に5人ずつ座ると30人が座れなくなる。6人ずつ座ると長椅子がちょうど2つ余る。生徒の人数を求める。

方程式文章問題連立方程式
2025/4/20

問題25と問題26の各式を展開せよ。 問題25は3乗の展開、問題26は公式を利用した展開を行う問題です。

展開二項定理式の展開多項式
2025/4/20

以下の6つの式を展開する問題です。 (1) $(x+y+z)(x+y-z)$ (2) $(x^2+2x-4)(x^2-2x-4)$ (3) $(a+2b)^2(a-2b)^2$ (4) $(3x-y)...

展開多項式因数分解式変形
2025/4/20