2桁の自然数について、十の位の数を$a$、一の位の数を$b$とする。十の位の数の2倍と一の位の数の和が8であるとき、その2桁の自然数が8で割り切れることを示す問題です。

代数学整数代数式割り算倍数論証
2025/4/20

1. 問題の内容

2桁の自然数について、十の位の数をaa、一の位の数をbbとする。十の位の数の2倍と一の位の数の和が8であるとき、その2桁の自然数が8で割り切れることを示す問題です。

2. 解き方の手順

(1) 2桁の整数をaabbを用いて表します。2桁の整数は10a+b10a + bと表すことができます。
(2) 十の位の数の2倍と一の位の数の和が8であることから、2a+b=82a + b = 8という関係が成り立ちます。
(3) 10a+b10a + bを、2a+b=82a+b=8を利用して変形します。
10a+b=(2a+b)+8a10a + b = (2a + b) + 8a
2a+b=82a + b = 8を代入すると、
10a+b=8+8a=8(1+a)10a + b = 8 + 8a = 8(1+a)
1+a1+aは整数なので、10a+b10a+bは8で割り切れます。
したがって、十の位の数の2倍と一の位の数の和が8になる2桁の整数は8で割り切れます。

3. 最終的な答え

ウ:8a8a

「代数学」の関連問題

連続する3つの偶数があり、それらの和が90より大きく100より小さいとき、これらの3つの偶数の積を求めます。

不等式偶数方程式整数
2025/4/20

与えられた6つの式の分母を有理化する。

分母の有理化平方根の計算式の計算
2025/4/20

与えられた数式の分母を有理化する問題です。問題は(3), (4), (5), (6) の4つです。 (3) $\frac{2\sqrt{2}}{3-\sqrt{5}}$ (4) $\frac{1}{\...

有理化根号分母の有理化計算
2025/4/20

以下の5つの式を計算します。 (1) $\sqrt{5}(3\sqrt{10}-2\sqrt{5})$ (2) $(2\sqrt{2}-\sqrt{3})(4\sqrt{2}+5\sq...

平方根有理化根号の計算分配法則公式
2025/4/20

等差数列をなす3つの数があり、その和が15、積が80である。この3つの数を求めなさい。

等差数列方程式数列
2025/4/20

与えられた6つの式を因数分解する問題です。 (1) $2a^2 - 7ab + 6b^2$ (2) $3a^2 - 4ab - 4b^2$ (3) $5x^2 + 7xy - 6y^2$ (4) $1...

因数分解多項式
2025/4/20

与えられた4つの式を因数分解する問題です。 (1) $x(x+1) + 2(x+1)$ (2) $(a-1)x - (a-1)$ (3) $a(x-y) - 2(y-x)$ (4) $2a(a-3b)...

因数分解多項式共通因数たすき掛け
2025/4/20

体育館に生徒が入る際、1つの長椅子に5人ずつ座ると30人が座れなくなる。6人ずつ座ると長椅子がちょうど2つ余る。生徒の人数を求める。

方程式文章問題連立方程式
2025/4/20

問題25と問題26の各式を展開せよ。 問題25は3乗の展開、問題26は公式を利用した展開を行う問題です。

展開二項定理式の展開多項式
2025/4/20

以下の6つの式を展開する問題です。 (1) $(x+y+z)(x+y-z)$ (2) $(x^2+2x-4)(x^2-2x-4)$ (3) $(a+2b)^2(a-2b)^2$ (4) $(3x-y)...

展開多項式因数分解式変形
2025/4/20