与えられた数26と63を素因数分解すること。

数論素因数分解素数整数の性質
2025/4/20

1. 問題の内容

与えられた数26と63を素因数分解すること。

2. 解き方の手順

(1) 26の素因数分解
26を素数で割っていく。
26は2で割れるので、26=2×1326 = 2 \times 13
13は素数なので、これで素因数分解は完了。
(2) 63の素因数分解
63を素数で割っていく。
63は2では割れないが、3で割れるので、63=3×2163 = 3 \times 21
21も3で割れるので、21=3×721 = 3 \times 7
7は素数なので、これで素因数分解は完了。
したがって、63=3×3×7=32×763 = 3 \times 3 \times 7 = 3^2 \times 7

3. 最終的な答え

(1) 26の素因数分解:2×132 \times 13
(2) 63の素因数分解:32×73^2 \times 7

「数論」の関連問題

## 問題 1(1) の内容

数学的帰納法等式不等式階乗
2025/7/17

奇数の数列 ${a_n}$ があり、それを第 $n$ 群に $n$ 個の項を含むように分割する。 (1) 第10群の3番目の数を求める。 (2) 第 $n$ 群の最後の数を求める。 (3) 第 $n$...

数列群分け奇数等差数列総和
2025/7/16

整数の中で、2でも3でも5でも割り切れないものだけを小さい順に並べた数列がある。この数列の150番目の数を、選択肢の中から選ぶ問題。選択肢は以下の通り。 1: 541 2: 547 3: 557 4:...

整数の性質包除原理数列
2025/7/16

(1) $10^{10}$ を $2020$ で割った余りを求める。 (2) $100$桁の正の整数で、各位の数の和が $2$ となるもののうち、$2020$ で割り切れるものの個数を求める。

剰余合同式整数の性質桁数約数
2025/7/16

整数 $a$ を $n$ 回かけることを $a \times \langle n \rangle$ で表し、整数 $b$ の一の位の数を $||b||$ で表す。$a$ が整数のとき、$|| a \t...

整数の性質べき乗一の位
2025/7/16

(1) $10^{10}$ を $2020$ で割った余りを求める。 (2) $100$ 桁の正の整数で、各位の数の和が $2$ となるもののうち、$2020$ で割り切れるものの個数を求める。

剰余整数の性質合同式
2025/7/16

すべての自然数 $n$ に対して、$2^{2n+1} + 3(-1)^n$ が5の倍数であることを数学的帰納法を用いて証明する。

数学的帰納法整数の性質倍数
2025/7/16

(1) $10^{10}$ を $2020$ で割った余りを求めよ。 (2) 100桁の正の整数で各位の数の和が $2$ となるもののうち、$2020$ で割り切れるものの個数を求めよ。

合同算術剰余整数の性質
2025/7/16

この問題は、2つの命題を証明する問題です。 (1) 整数 $n$ が3の倍数でないとき、$n^2$ を3で割った余りが1であることを証明します。 (2) 3つの整数 $x, y, z$ が等式 $x^...

整数の性質合同式背理法剰余
2025/7/16

自然数 $a$ と $b$ が互いに素であるとき、不定方程式 $ax + by = n$ が非負整数解 $(x, y)$ をもたないような自然数 $n$ の個数を求める問題です。

不定方程式互いに素シルベスターの公式チキンマックナゲット定理整数論
2025/7/16