$|-2 + \sqrt{3}i| = \sqrt{(-2)^2 + (\sqrt{3})^2} = \sqrt{4 + 3} = \sqrt{7}$

代数学複素数絶対値複素平面
2025/4/20
##

1. 問題の内容

複素数の絶対値の計算問題です。
2+3i6i|-2 + \sqrt{3}i| - |-\sqrt{6} - i| を計算します。
##

2. 解き方の手順

複素数 a+bia+bi の絶対値は a2+b2\sqrt{a^2 + b^2} で計算できます。
したがって、

1. $|-2 + \sqrt{3}i|$ を計算します。

2+3i=(2)2+(3)2=4+3=7|-2 + \sqrt{3}i| = \sqrt{(-2)^2 + (\sqrt{3})^2} = \sqrt{4 + 3} = \sqrt{7}

2. $|-\sqrt{6} - i|$ を計算します。

6i=(6)2+(1)2=6+1=7|-\sqrt{6} - i| = \sqrt{(-\sqrt{6})^2 + (-1)^2} = \sqrt{6 + 1} = \sqrt{7}

3. 計算結果を代入して最終的な計算を行います。

2+3i6i=77=0|-2 + \sqrt{3}i| - |-\sqrt{6} - i| = \sqrt{7} - \sqrt{7} = 0
##

3. 最終的な答え

0

「代数学」の関連問題

複素数平面上に3点A(z), B($z^3$), C($z^5$)がある。 (1) A, B, Cが異なる3点となるためのzの条件を求める。 (2) 異なる3点A, B, Cが同一直線上にあるようなz...

複素数平面複素数幾何学代数
2025/4/20

$a \geq \frac{1}{2}$、かつ $x = \sqrt{2a-1}$のとき、$\sqrt{a^2-x^2}$の値を求める。

根号絶対値不等式式の計算
2025/4/20

$a \ge \frac{1}{2}$ のとき、$x = \sqrt{2a-1}$ が与えられている。このとき、$\sqrt{a^2 - x^2}$ の値を求めよ。

平方根絶対値式の計算
2025/4/20

与えられた式 $x^2 + 4xy + 3y^2 - x - y$ を因数分解せよ。

因数分解多項式代数
2025/4/20

$y = -3x + 12 - 5$ $y = -3x + 7$

連立方程式代入法一次方程式
2025/4/20

体育館に生徒が集合し、長椅子に座る。1脚に4人ずつ座ると、7脚足りない。また、いくつかの椅子に1脚につき5人ずつ座り、残りの12脚に4人ずつ座ると、ちょうど全員が座れる。体育館に集合した生徒の人数を求...

一次方程式文章問題連立方程式
2025/4/20

与えられた多項式 $a^2 + ax - 3x + 4 + ax^3$ を $x$ について整理し、次数を求める問題です。

多項式次数整理
2025/4/20

次の連立不等式を解きます。 $ \begin{cases} 2x - 3 \le 8x + 21 \\ -10x + 2 \ge 8x - 16 \end{cases} $

不等式連立不等式一次不等式解の範囲
2025/4/20

与えられた式 $x^2 + 4xy + 3y^2 - x - y$ を因数分解してください。

因数分解多項式
2025/4/20

与えられた多項式 $a^2 + ax - 3x + 4 + ax^3$ を、$a$ について降べきの順に整理する問題です。

多項式降べきの順式変形
2025/4/20