$\cos x = 2$ を満たす $x$ を求める問題です。解析学三角関数コサイン値域解なし2025/4/211. 問題の内容cosx=2\cos x = 2cosx=2 を満たす xxx を求める問題です。2. 解き方の手順コサイン関数の値域を考えます。コサイン関数は、どのような xxx に対しても −1≤cosx≤1-1 \leq \cos x \leq 1−1≤cosx≤1 の範囲の値しかとりません。つまり、cosx\cos xcosx の値は常に −1-1−1 以上 111 以下です。したがって、cosx=2\cos x = 2cosx=2 を満たすような xxx は存在しません。3. 最終的な答え解なし