ある人のアルバイト収入について、3月の収入は54000円である。1月と2月の収入の差は2月と3月の収入の差に等しく、3ヶ月の収入の平均は43000円である。このとき、1月の収入を求める。

代数学連立方程式一次方程式文章問題
2025/4/22

1. 問題の内容

ある人のアルバイト収入について、3月の収入は54000円である。1月と2月の収入の差は2月と3月の収入の差に等しく、3ヶ月の収入の平均は43000円である。このとき、1月の収入を求める。

2. 解き方の手順

まず、1月、2月、3月の収入をそれぞれ xx, yy, zz とおく。
問題文より、
z=54000z = 54000
xy=yzx - y = y - z
x+y+z3=43000\frac{x + y + z}{3} = 43000
という3つの式が得られる。
2番目の式を変形すると、
x+z=2yx + z = 2y
となり、y=x+z2y = \frac{x+z}{2}
3番目の式を変形すると、
x+y+z=3×43000=129000x + y + z = 3 \times 43000 = 129000
これにz=54000z = 54000を代入すると、
x+y+54000=129000x + y + 54000 = 129000
x+y=12900054000=75000x + y = 129000 - 54000 = 75000
y=x+z2y = \frac{x+z}{2}x+y=75000x+y = 75000に代入すると、
x+x+z2=75000x + \frac{x+z}{2} = 75000
2x+x+z=1500002x + x + z = 150000
3x+z=1500003x + z = 150000
z=54000z = 54000を代入すると、
3x+54000=1500003x + 54000 = 150000
3x=15000054000=960003x = 150000 - 54000 = 96000
x=960003=32000x = \frac{96000}{3} = 32000

3. 最終的な答え

1月の収入は 32000 円である。

「代数学」の関連問題

与えられた式 $12x^2 - 7xy - 12y^2$ を因数分解します。

因数分解二次式多項式
2025/4/22

与えられた2次式 $3x^2 + 5x + 2$ を因数分解してください。

因数分解二次式多項式
2025/4/22

不等式 $a^2 - ab + b^2 \geq a + b - 1$ を証明し、等号が成り立つ条件を求める。

不等式証明平方完成等号成立条件
2025/4/22

次の不等式を証明します。 $(x^4 + y^4)(x^2 + y^2) \ge (x^3 + y^3)^2$

不等式式の展開証明相加相乗平均
2025/4/22

与えられた不等式を証明します。 (1) $\sqrt{7} + \sqrt{8} > \sqrt{5} + \sqrt{10}$ (2) $\sqrt{7} - \sqrt{6} > \sqrt{14...

不等式の証明平方根大小比較
2025/4/22

与えられた複数の分数式の加法・減法を行う問題です。 (1) $\frac{x^2-4}{x+1} + \frac{3}{x+1}$ (2) $\frac{x^2}{x-2} - \frac{4x-4}...

分数式加減法因数分解通分約分
2025/4/22

$a > 0$, $b > 0$ のとき、次の不等式が成り立つことを証明します。 (1) $2\sqrt{a} + \sqrt{b} > \sqrt{4a+b}$ (2) $\sqrt{\frac{a...

不等式平方根証明相加相乗平均
2025/4/22

次の2つの不等式を証明し、等号が成り立つ条件を求める問題です。 (1) $x^2 + x + 1 \ge 3x$ (2) $x^2 - 2x + 2 > 0$

不等式二次不等式平方完成証明等号成立条件
2025/4/22

4つの行列 $A = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 5 \end{pmatrix}$, $C = \...

行列行列の積行列のサイズ
2025/4/22

与えられた4つの行列A, B, C, Dに対して、2つの行列の積が定義できるかどうかを判定し、定義できる場合にはその行列のサイズを求める問題(a)。そして、定義できる行列の積を実際に計算する問題(b)...

行列行列の積線形代数
2025/4/22