集合 $A = \{x | -2 \leq x \leq 3\}$ と集合 $B = \{x | k-6 \leq x \leq k\}$ が与えられている。$A \subseteq B$ となるような $k$ の値の範囲を求める。

代数学集合不等式包含関係
2025/4/22

1. 問題の内容

集合 A={x2x3}A = \{x | -2 \leq x \leq 3\} と集合 B={xk6xk}B = \{x | k-6 \leq x \leq k\} が与えられている。ABA \subseteq B となるような kk の値の範囲を求める。

2. 解き方の手順

ABA \subseteq B となるためには、集合 AA に含まれるすべての要素が集合 BB にも含まれていなければならない。つまり、AA の範囲が BB の範囲に含まれている必要がある。
したがって、以下の不等式が成り立つ必要がある。
k62k - 6 \leq -2
k3k \geq 3
上記の不等式をそれぞれ解くと:
k62k - 6 \leq -2 より、
k4k \leq 4
k3k \geq 3
したがって、kk は以下の範囲を満たす必要がある。
k62k-6 \leq -2 かつ k3k \geq 3
これを満たす kk の範囲は 3k43 \leq k \leq 4 である。

3. 最終的な答え

3k43 \leq k \leq 4

「代数学」の関連問題

与えられた式 $12x^2 - 7xy - 12y^2$ を因数分解します。

因数分解二次式多項式
2025/4/22

与えられた2次式 $3x^2 + 5x + 2$ を因数分解してください。

因数分解二次式多項式
2025/4/22

不等式 $a^2 - ab + b^2 \geq a + b - 1$ を証明し、等号が成り立つ条件を求める。

不等式証明平方完成等号成立条件
2025/4/22

次の不等式を証明します。 $(x^4 + y^4)(x^2 + y^2) \ge (x^3 + y^3)^2$

不等式式の展開証明相加相乗平均
2025/4/22

与えられた不等式を証明します。 (1) $\sqrt{7} + \sqrt{8} > \sqrt{5} + \sqrt{10}$ (2) $\sqrt{7} - \sqrt{6} > \sqrt{14...

不等式の証明平方根大小比較
2025/4/22

与えられた複数の分数式の加法・減法を行う問題です。 (1) $\frac{x^2-4}{x+1} + \frac{3}{x+1}$ (2) $\frac{x^2}{x-2} - \frac{4x-4}...

分数式加減法因数分解通分約分
2025/4/22

$a > 0$, $b > 0$ のとき、次の不等式が成り立つことを証明します。 (1) $2\sqrt{a} + \sqrt{b} > \sqrt{4a+b}$ (2) $\sqrt{\frac{a...

不等式平方根証明相加相乗平均
2025/4/22

次の2つの不等式を証明し、等号が成り立つ条件を求める問題です。 (1) $x^2 + x + 1 \ge 3x$ (2) $x^2 - 2x + 2 > 0$

不等式二次不等式平方完成証明等号成立条件
2025/4/22

4つの行列 $A = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 5 \end{pmatrix}$, $C = \...

行列行列の積行列のサイズ
2025/4/22

与えられた4つの行列A, B, C, Dに対して、2つの行列の積が定義できるかどうかを判定し、定義できる場合にはその行列のサイズを求める問題(a)。そして、定義できる行列の積を実際に計算する問題(b)...

行列行列の積線形代数
2025/4/22