$x+y+z = 2$ と $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2$ のとき、$\frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3}$ の値を求める。代数学連立方程式分数式式の展開2025/4/221. 問題の内容x+y+z=2x+y+z = 2x+y+z=2 と 1x+1y+1z=2\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2x1+y1+z1=2 のとき、1x3+1y3+1z3\frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3}x31+y31+z31 の値を求める。2. 解き方の手順まず、1x+1y+1z=2\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2x1+y1+z1=2 を変形する。1x+1y+1z=yz+zx+xyxyz=2\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{yz + zx + xy}{xyz} = 2x1+y1+z1=xyzyz+zx+xy=2よって、yz+zx+xy=2xyzyz + zx + xy = 2xyzyz+zx+xy=2xyzまた、x+y+z=2x+y+z=2x+y+z=2 である。両辺を3乗すると、(x+y+z)3=x3+y3+z3+3(x+y)(y+z)(z+x)=8(x+y+z)^3 = x^3 + y^3 + z^3 + 3(x+y)(y+z)(z+x) = 8(x+y+z)3=x3+y3+z3+3(x+y)(y+z)(z+x)=81x+1y+1z=2\frac{1}{x}+\frac{1}{y}+\frac{1}{z} = 2x1+y1+z1=2 であることから、xy+yz+zxxyz=2\frac{xy+yz+zx}{xyz} = 2xyzxy+yz+zx=2 となるので、xy+yz+zx=2xyzxy+yz+zx = 2xyzxy+yz+zx=2xyz(x+y+z)(1x+1y+1z)=x1x+x1y+x1z+y1x+y1y+y1z+z1x+z1y+z1z=3+xy+xz+yx+yz+zx+zy=4(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}) = x\frac{1}{x}+x\frac{1}{y}+x\frac{1}{z}+y\frac{1}{x}+y\frac{1}{y}+y\frac{1}{z}+z\frac{1}{x}+z\frac{1}{y}+z\frac{1}{z} = 3+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y} = 4(x+y+z)(x1+y1+z1)=xx1+xy1+xz1+yx1+yy1+yz1+zx1+zy1+zz1=3+yx+zx+xy+zy+xz+yz=4xy+xz+yx+yz+zx+zy=1\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y} = 1yx+zx+xy+zy+xz+yz=11x+1y+1z=2\frac{1}{x}+\frac{1}{y}+\frac{1}{z} = 2x1+y1+z1=2 より、yz+zx+xyxyz=2\frac{yz+zx+xy}{xyz} = 2xyzyz+zx+xy=2 から、 xy+yz+zx=2xyzxy+yz+zx = 2xyzxy+yz+zx=2xyz(x+y+z)2=x2+y2+z2+2(xy+yz+zx)=4(x+y+z)^2 = x^2+y^2+z^2+2(xy+yz+zx) = 4(x+y+z)2=x2+y2+z2+2(xy+yz+zx)=4x2+y2+z2=(x+y+z)2−2(xy+yz+zx)x^2+y^2+z^2 = (x+y+z)^2 - 2(xy+yz+zx)x2+y2+z2=(x+y+z)2−2(xy+yz+zx)1x3+1y3+1z3=(1x+1y+1z)3−3(1x+1y+1z)(1xy+1yz+1zx)+31xyz=23−3∗2∗x+y+zxyz+31xyz=8−62xyz+31xyz=8−121xyz+31xyz=8−91xyz\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3} = (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^3-3(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})+3\frac{1}{xyz} = 2^3-3*2*\frac{x+y+z}{xyz}+3\frac{1}{xyz} = 8-6\frac{2}{xyz}+3\frac{1}{xyz} = 8-12\frac{1}{xyz}+3\frac{1}{xyz} = 8-9\frac{1}{xyz}x31+y31+z31=(x1+y1+z1)3−3(x1+y1+z1)(xy1+yz1+zx1)+3xyz1=23−3∗2∗xyzx+y+z+3xyz1=8−6xyz2+3xyz1=8−12xyz1+3xyz1=8−9xyz1xy+yz+zx=2xyzxy+yz+zx = 2xyzxy+yz+zx=2xyz よりxy+yz+zxxyz=2\frac{xy+yz+zx}{xyz}=2xyzxy+yz+zx=21x+1y+1z=2\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2x1+y1+z1=2(1x+1y+1z)3=1x3+1y3+1z3+3(1x+1y)(1y+1z)(1z+1x)=8(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^3 = \frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{z^3} + 3(\frac{1}{x}+\frac{1}{y})(\frac{1}{y}+\frac{1}{z})(\frac{1}{z}+\frac{1}{x}) = 8(x1+y1+z1)3=x31+y31+z31+3(x1+y1)(y1+z1)(z1+x1)=81x3+1y3+1z3=8\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=8x31+y31+z31=83. 最終的な答え8