与えられた6つの2次式をそれぞれ因数分解する。

代数学因数分解二次式
2025/4/22

1. 問題の内容

与えられた6つの2次式をそれぞれ因数分解する。

2. 解き方の手順

(1) 2x2+7x+32x^2 + 7x + 3
2x2+7x+3=(2x+1)(x+3)2x^2 + 7x + 3 = (2x + 1)(x + 3)
(2) 3x2+x103x^2 + x - 10
3x2+x10=(3x5)(x+2)3x^2 + x - 10 = (3x - 5)(x + 2)
(3) 6x2x26x^2 - x - 2
6x2x2=(3x2)(2x+1)6x^2 - x - 2 = (3x - 2)(2x + 1)
(4) 3x217x63x^2 - 17x - 6
3x217x6=(3x+1)(x6)3x^2 - 17x - 6 = (3x + 1)(x - 6)
(5) 6x229x+206x^2 - 29x + 20
6x229x+20=(2x5)(3x4)6x^2 - 29x + 20 = (2x - 5)(3x - 4)
(6) 10x231x+1510x^2 - 31x + 15
10x231x+15=(2x5)(5x3)10x^2 - 31x + 15 = (2x - 5)(5x - 3)

3. 最終的な答え

(1) (2x+1)(x+3)(2x + 1)(x + 3)
(2) (3x5)(x+2)(3x - 5)(x + 2)
(3) (3x2)(2x+1)(3x - 2)(2x + 1)
(4) (3x+1)(x6)(3x + 1)(x - 6)
(5) (2x5)(3x4)(2x - 5)(3x - 4)
(6) (2x5)(5x3)(2x - 5)(5x - 3)

「代数学」の関連問題

与えられた式 $12x^2 - 7xy - 12y^2$ を因数分解します。

因数分解二次式多項式
2025/4/22

与えられた2次式 $3x^2 + 5x + 2$ を因数分解してください。

因数分解二次式多項式
2025/4/22

不等式 $a^2 - ab + b^2 \geq a + b - 1$ を証明し、等号が成り立つ条件を求める。

不等式証明平方完成等号成立条件
2025/4/22

次の不等式を証明します。 $(x^4 + y^4)(x^2 + y^2) \ge (x^3 + y^3)^2$

不等式式の展開証明相加相乗平均
2025/4/22

与えられた不等式を証明します。 (1) $\sqrt{7} + \sqrt{8} > \sqrt{5} + \sqrt{10}$ (2) $\sqrt{7} - \sqrt{6} > \sqrt{14...

不等式の証明平方根大小比較
2025/4/22

与えられた複数の分数式の加法・減法を行う問題です。 (1) $\frac{x^2-4}{x+1} + \frac{3}{x+1}$ (2) $\frac{x^2}{x-2} - \frac{4x-4}...

分数式加減法因数分解通分約分
2025/4/22

$a > 0$, $b > 0$ のとき、次の不等式が成り立つことを証明します。 (1) $2\sqrt{a} + \sqrt{b} > \sqrt{4a+b}$ (2) $\sqrt{\frac{a...

不等式平方根証明相加相乗平均
2025/4/22

次の2つの不等式を証明し、等号が成り立つ条件を求める問題です。 (1) $x^2 + x + 1 \ge 3x$ (2) $x^2 - 2x + 2 > 0$

不等式二次不等式平方完成証明等号成立条件
2025/4/22

4つの行列 $A = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 5 \end{pmatrix}$, $C = \...

行列行列の積行列のサイズ
2025/4/22

与えられた4つの行列A, B, C, Dに対して、2つの行列の積が定義できるかどうかを判定し、定義できる場合にはその行列のサイズを求める問題(a)。そして、定義できる行列の積を実際に計算する問題(b)...

行列行列の積線形代数
2025/4/22