次の式を簡単にせよ。 $\tan(\theta + \frac{\pi}{4}) \tan(\theta - \frac{\pi}{4}) = ?$解析学三角関数加法定理tan式変形2025/3/171. 問題の内容次の式を簡単にせよ。tan(θ+π4)tan(θ−π4)=?\tan(\theta + \frac{\pi}{4}) \tan(\theta - \frac{\pi}{4}) = ?tan(θ+4π)tan(θ−4π)=?2. 解き方の手順まず、tan(α+β)=tanα+tanβ1−tanαtanβ\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}tan(α+β)=1−tanαtanβtanα+tanβ と tan(α−β)=tanα−tanβ1+tanαtanβ\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}tan(α−β)=1+tanαtanβtanα−tanβ を用いる。この公式を使うと、tan(θ+π4)=tanθ+tanπ41−tanθtanπ4=tanθ+11−tanθ\tan(\theta + \frac{\pi}{4}) = \frac{\tan \theta + \tan \frac{\pi}{4}}{1 - \tan \theta \tan \frac{\pi}{4}} = \frac{\tan \theta + 1}{1 - \tan \theta}tan(θ+4π)=1−tanθtan4πtanθ+tan4π=1−tanθtanθ+1tan(θ−π4)=tanθ−tanπ41+tanθtanπ4=tanθ−11+tanθ\tan(\theta - \frac{\pi}{4}) = \frac{\tan \theta - \tan \frac{\pi}{4}}{1 + \tan \theta \tan \frac{\pi}{4}} = \frac{\tan \theta - 1}{1 + \tan \theta}tan(θ−4π)=1+tanθtan4πtanθ−tan4π=1+tanθtanθ−1したがって、tan(θ+π4)tan(θ−π4)=tanθ+11−tanθ⋅tanθ−11+tanθ\tan(\theta + \frac{\pi}{4}) \tan(\theta - \frac{\pi}{4}) = \frac{\tan \theta + 1}{1 - \tan \theta} \cdot \frac{\tan \theta - 1}{1 + \tan \theta}tan(θ+4π)tan(θ−4π)=1−tanθtanθ+1⋅1+tanθtanθ−1=tanθ+11−tanθ⋅tanθ−11+tanθ=tanθ+1tanθ+1⋅tanθ−11−tanθ= \frac{\tan \theta + 1}{1 - \tan \theta} \cdot \frac{\tan \theta - 1}{1 + \tan \theta} = \frac{\tan \theta + 1}{\tan \theta + 1} \cdot \frac{\tan \theta - 1}{1 - \tan \theta}=1−tanθtanθ+1⋅1+tanθtanθ−1=tanθ+1tanθ+1⋅1−tanθtanθ−1=tanθ−11−tanθ=−1= \frac{\tan \theta - 1}{1 - \tan \theta} = -1=1−tanθtanθ−1=−13. 最終的な答え-1