半径4cmの球の体積と表面積を求める問題です。

幾何学体積表面積公式
2025/3/17

1. 問題の内容

半径4cmの球の体積と表面積を求める問題です。

2. 解き方の手順

球の体積VVと表面積SSは、半径をrrとすると、それぞれ以下の公式で求められます。
* 体積: V=43πr3V = \frac{4}{3}\pi r^3
* 表面積: S=4πr2S = 4\pi r^2
半径r=4r = 4cmを上記の公式に代入します。
体積VVは、
V=43π(4)3=43π×64=2563πV = \frac{4}{3}\pi (4)^3 = \frac{4}{3}\pi \times 64 = \frac{256}{3}\pi
表面積SSは、
S=4π(4)2=4π×16=64πS = 4\pi (4)^2 = 4\pi \times 16 = 64\pi

3. 最終的な答え

* 体積: 2563π cm3\frac{256}{3}\pi \text{ cm}^3
* 表面積: 64π cm264\pi \text{ cm}^2

「幾何学」の関連問題

複素数平面上に点A, B, C, D があり、それぞれ複素数$\alpha$, $\beta$, $\gamma$, $ti$ で表される。 $\alpha = 2+2i$, $\beta = -1+...

複素数平面複素数回転直線ベクトル
2025/6/11

円 $x^2 + y^2 = 5$ と直線 $y = 2x + m$ について、以下の問いに答えます。 (1) 円と直線が共有点を持つときの、定数 $m$ の値の範囲を求めます。 (2) 円と直線が接...

直線共有点接線座標
2025/6/11

円と直線の連立方程式を解き、共有点の座標を求める問題です。 (1) 円 $x^2 + y^2 = 25$ と直線 $y = x + 1$ (2) 円 $x^2 + y^2 = 8$ と直線 $x + ...

直線連立方程式座標共有点
2025/6/11

問題は、与えられた2点間の距離を求めることです。点の座標はそれぞれ (1) A(2, 1), B(3, 4), (2) C(3, -4), D(-2, -1), (3) O(0, 0), E(-3, ...

距離座標平面三平方の定理
2025/6/11

直線 $l: x - 2y + 1 = 0$ と点 $P(2, -1)$ について、以下の問いに答えます。 (1) 直線 $l$ の法線ベクトルを1つ求めます。 (2) 点 $P$ を通り、直線 $l...

ベクトル直線法線ベクトル媒介変数表示交点
2025/6/11

2つのベクトル $\vec{a} = (1, 2)$ と $\vec{b} = (-3, 4)$ の内積を求める問題です。

ベクトル内積線形代数
2025/6/11

$\theta$ が与えられたときに、$\sin\theta$, $\cos\theta$, $\tan\theta$ の値をそれぞれ求める問題です。 (1) $\theta = \frac{5}{4...

三角関数三角比単位円sincostan
2025/6/10

点A(2, -4), B(1, -2)が与えられたとき、ベクトル$\overrightarrow{AB}$と同じ向きの単位ベクトルを求めよ。

ベクトル単位ベクトルベクトルの計算座標
2025/6/10

直方体ABCD-EFGHにおいて、辺ABの中点をMとするとき、∠MECの大きさと△MECの面積を求める問題です。ただし、AD = 1, EF = 2 とします。

空間図形直方体三角比余弦定理面積
2025/6/10

$0^\circ \le \theta \le 180^\circ$ のとき、次の等式を満たす $\theta$ を求める問題です。 (1) $2\sin\theta = \sqrt{2}$ (2) ...

三角関数三角比方程式
2025/6/10