半径5cmの球と半径2cmの球の体積を求める問題です。

幾何学体積公式半径円周率
2025/3/17

1. 問題の内容

半径5cmの球と半径2cmの球の体積を求める問題です。

2. 解き方の手順

球の体積の公式は V=43πr3V = \frac{4}{3}\pi r^3 です。ここで、VVは体積、rrは半径、π\piは円周率を表します。
(2) 半径5cmの球の体積を求めます。
r=5r = 5を公式に代入します。
V=43π(5)3=43π(125)=5003πV = \frac{4}{3} \pi (5)^3 = \frac{4}{3} \pi (125) = \frac{500}{3} \pi
(3) 半径2cmの球の体積を求めます。
r=2r = 2を公式に代入します。
V=43π(2)3=43π(8)=323πV = \frac{4}{3} \pi (2)^3 = \frac{4}{3} \pi (8) = \frac{32}{3} \pi

3. 最終的な答え

(2) 半径5cmの球の体積: 5003π cm3\frac{500}{3} \pi \text{ cm}^3
(3) 半径2cmの球の体積: 323π cm3\frac{32}{3} \pi \text{ cm}^3

「幾何学」の関連問題

座標平面上に円 $C: x^2 + y^2 + 2ax + 2ay + 3 - 6a = 0$ と直線 $l: y = m(x-2) (m > 0)$ がある。点 (9, 4) は C 上の点である。...

直線座標平面接線共有点
2025/4/11

直方体ABCD-EFGHにおいて、FG=$2\sqrt{2}$、CG=$\sqrt{23}$、HG=$2\sqrt{2}$、$\triangle CFH = 6\sqrt{3}$である。 (1) 三角...

空間図形直方体三角錐体積三平方の定理
2025/4/11

一辺の長さが1の正四面体OABCにおいて、辺ABの中点をMとするとき、以下のものを求める問題です。 (1) $\sin \angle OMC$ (2) 三角形OMCの面積S (3) 正四面体OABCの...

正四面体空間図形三角比体積面積余弦定理
2025/4/11

半径 $R$ の円に内接する四角形 $ABCD$ があり、$AB=5$, $BC=CD=2$, $AD=4$ である。このとき、$AC$ の長さと $R$ の値を求めよ。

四角形内接余弦定理正弦定理
2025/4/11

一辺の長さが5の正四面体ABCDがある。辺BCの中点をMとし、∠AMD = θとする。頂点AからMDに下ろした垂線をANとする。 (1) $\cos{\theta}$ を求めよ。 (2) ANの長さを...

正四面体三角比余弦定理三平方の定理空間図形
2025/4/11

原点O、点P($\cos \theta, \sin \theta$) (ただし、$0 < \theta < \frac{\pi}{2}$) がある座標平面上に、点Pを通り傾きが$-\frac{3}{4...

三角関数座標平面面積最大値直線の傾き
2025/4/11

一辺の長さが5の正四面体ABCDにおいて、辺BCを2:3に内分する点をPとするとき、以下の問いに答える。 (1) 線分APの長さを求める。 (2) 角APDを$\theta$とおくとき、$\sin \...

空間図形ベクトル正四面体内分三角比面積
2025/4/11

底面の半径が $r$ 、高さが $h$ の円柱がある。この円柱の底面の半径を $\frac{1}{2}$ 倍にし、高さを2倍にした新しい円柱を作る。新しい円柱の体積は、元の円柱の体積の何倍になるか求め...

体積円柱相似
2025/4/11

500円硬貨の周りに巻き付けた紐と、その硬貨の周りから2cm離して1周させた紐の長さの差を求める問題です。円周率は $π$ とします。

円周円周率長さ幾何
2025/4/11

## 問題の内容

ベクトル位置ベクトル中点重心内分点
2025/4/11