与えられた無限級数 $\sum_{k=1}^{\infty} \frac{1}{2} \left(-\frac{1}{2}\right)^{k-1}$ の収束または発散を調べ、収束する場合はその値を求める。

解析学無限級数等比級数収束発散
2025/4/25

1. 問題の内容

与えられた無限級数 k=112(12)k1\sum_{k=1}^{\infty} \frac{1}{2} \left(-\frac{1}{2}\right)^{k-1} の収束または発散を調べ、収束する場合はその値を求める。

2. 解き方の手順

この無限級数は、初項 a=12a = \frac{1}{2}、公比 r=12r = -\frac{1}{2} の等比級数である。
等比級数 k=1ark1\sum_{k=1}^{\infty} a r^{k-1} は、 r<1|r| < 1 のとき収束し、その和は a1r\frac{a}{1-r} である。
ここでは、 r=12=12<1|r| = |-\frac{1}{2}| = \frac{1}{2} < 1 であるから、与えられた無限級数は収束する。
その和は、
a1r=121(12)=121+12=1232=1223=13\frac{a}{1-r} = \frac{\frac{1}{2}}{1 - (-\frac{1}{2})} = \frac{\frac{1}{2}}{1 + \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}

3. 最終的な答え

与えられた無限級数は収束し、その値は 13\frac{1}{3} である。

「解析学」の関連問題

2変数関数 $f(x, y) = x^3 - 3axy + y^3$ ($a > 0$) の極値をすべて求める問題です。極大値か極小値かも示す必要があります。

多変数関数極値偏微分ヘッセ行列
2025/4/26

2変数関数 $f(x, y) = e^{x+y}$ を、点 $(x, y) = (0, 0)$ において3次の項までテイラー展開する。

テイラー展開多変数関数偏微分
2025/4/26

2変数関数 $f(x, y) = x^3 + y^3 - 3xy$ の極値をすべて求め、極大値か極小値かを判別してください。

多変数関数極値偏微分ヘッセ行列鞍点
2025/4/26

曲線 $x = 2t - \sin 2t$, $y = 1 + \cos 2t$ ($0 \le t \le \pi$) の長さを求めよ。

曲線曲線の長さ積分パラメータ表示
2025/4/26

2変数関数 $f(x,y) = \log(1+x+y)$ を、点 $(0,0)$ のまわりで2次の項までテイラー展開してください。

テイラー展開多変数関数偏微分
2025/4/26

2変数関数 $f(x,y) = e^{x+2y}$ を、点 $(0,0)$ の周りで2次の項までテイラー展開せよ。

テイラー展開偏微分多変数関数
2025/4/26

2変数関数 $f(x,y) = x^2 - 2xy + y^2$ について、$x=0, y=0$ における2次の項までのテイラー展開を求めます。

多変数関数テイラー展開偏微分
2025/4/26

(1) $x^2 - y^2 = a^2$ のとき、$\frac{d^2y}{dx^2}$ を $x$ と $y$ を用いて表せ。 (2) $x$ の関数 $y$ が媒介変数 $\theta$ を用い...

微分陰関数媒介変数微分計算
2025/4/26

曲線 $y = e^x + e^{-x}$ と直線 $x = 1$, および $x$軸, $y$軸で囲まれた図形を$x$軸のまわりに1回転させてできる立体の体積を求めよ。体積は $\frac{\pi}...

積分回転体の体積指数関数
2025/4/26

$0 \le \theta < 2\pi$ の範囲において、$\sqrt{3}\sin 2\theta + \cos 2\theta + 1 = \frac{8}{3} \cos \theta$ を満...

三角関数三角関数の合成2倍角の公式方程式
2025/4/26