与えられた10個の式を因数分解する問題です。代数学因数分解多項式代数2025/4/251. 問題の内容与えられた10個の式を因数分解する問題です。2. 解き方の手順各問題ごとに因数分解の手順を示します。(1) x3−25x=x(x2−25)=x(x−5)(x+5)x^3 - 25x = x(x^2 - 25) = x(x - 5)(x + 5)x3−25x=x(x2−25)=x(x−5)(x+5)(2) 5x2+25x−70=5(x2+5x−14)=5(x+7)(x−2)5x^2 + 25x - 70 = 5(x^2 + 5x - 14) = 5(x + 7)(x - 2)5x2+25x−70=5(x2+5x−14)=5(x+7)(x−2)(3) 20a+8a2−a3=−a(a2−8a−20)=−a(a−10)(a+2)20a + 8a^2 - a^3 = -a(a^2 - 8a - 20) = -a(a - 10)(a + 2)20a+8a2−a3=−a(a2−8a−20)=−a(a−10)(a+2)(4) 6x3+24x2y−72xy2=6x(x2+4xy−12y2)=6x(x+6y)(x−2y)6x^3 + 24x^2y - 72xy^2 = 6x(x^2 + 4xy - 12y^2) = 6x(x + 6y)(x - 2y)6x3+24x2y−72xy2=6x(x2+4xy−12y2)=6x(x+6y)(x−2y)(5) a3b−8a2b2+15ab3=ab(a2−8ab+15b2)=ab(a−3b)(a−5b)a^3b - 8a^2b^2 + 15ab^3 = ab(a^2 - 8ab + 15b^2) = ab(a - 3b)(a - 5b)a3b−8a2b2+15ab3=ab(a2−8ab+15b2)=ab(a−3b)(a−5b)(6) 36x3+48x2+16x=4x(9x2+12x+4)=4x(3x+2)236x^3 + 48x^2 + 16x = 4x(9x^2 + 12x + 4) = 4x(3x + 2)^236x3+48x2+16x=4x(9x2+12x+4)=4x(3x+2)2(7) x2−y2−x+y=(x+y)(x−y)−(x−y)=(x−y)(x+y−1)x^2 - y^2 - x + y = (x + y)(x - y) - (x - y) = (x - y)(x + y - 1)x2−y2−x+y=(x+y)(x−y)−(x−y)=(x−y)(x+y−1)(8) (3x−y)2−2(3x−y)−15(3x - y)^2 - 2(3x - y) - 15(3x−y)2−2(3x−y)−15A=3x−yA = 3x - yA=3x−y とおくと、A2−2A−15=(A−5)(A+3)A^2 - 2A - 15 = (A - 5)(A + 3)A2−2A−15=(A−5)(A+3)よって、 (3x−y−5)(3x−y+3)(3x - y - 5)(3x - y + 3)(3x−y−5)(3x−y+3)(9) (x−8)2−10(x−8)+25(x - 8)^2 - 10(x - 8) + 25(x−8)2−10(x−8)+25A=x−8A = x - 8A=x−8 とおくと、A2−10A+25=(A−5)2A^2 - 10A + 25 = (A - 5)^2A2−10A+25=(A−5)2よって、 (x−8−5)2=(x−13)2(x - 8 - 5)^2 = (x - 13)^2(x−8−5)2=(x−13)2(10) a2−8ab+16b2+3a−12b−40=(a−4b)2+3(a−4b)−40a^2 - 8ab + 16b^2 + 3a - 12b - 40 = (a - 4b)^2 + 3(a - 4b) - 40a2−8ab+16b2+3a−12b−40=(a−4b)2+3(a−4b)−40A=a−4bA = a - 4bA=a−4b とおくと、A2+3A−40=(A+8)(A−5)A^2 + 3A - 40 = (A + 8)(A - 5)A2+3A−40=(A+8)(A−5)よって、 (a−4b+8)(a−4b−5)(a - 4b + 8)(a - 4b - 5)(a−4b+8)(a−4b−5)3. 最終的な答え(1) x(x−5)(x+5)x(x - 5)(x + 5)x(x−5)(x+5)(2) 5(x+7)(x−2)5(x + 7)(x - 2)5(x+7)(x−2)(3) −a(a−10)(a+2)-a(a - 10)(a + 2)−a(a−10)(a+2)(4) 6x(x+6y)(x−2y)6x(x + 6y)(x - 2y)6x(x+6y)(x−2y)(5) ab(a−3b)(a−5b)ab(a - 3b)(a - 5b)ab(a−3b)(a−5b)(6) 4x(3x+2)24x(3x + 2)^24x(3x+2)2(7) (x−y)(x+y−1)(x - y)(x + y - 1)(x−y)(x+y−1)(8) (3x−y−5)(3x−y+3)(3x - y - 5)(3x - y + 3)(3x−y−5)(3x−y+3)(9) (x−13)2(x - 13)^2(x−13)2(10) (a−4b+8)(a−4b−5)(a - 4b + 8)(a - 4b - 5)(a−4b+8)(a−4b−5)