(1) $\int \frac{\cos x}{\sin x(\sin x + 1)} dx$ (4) $\int \frac{1}{1-\sin x} dx$解析学積分三角関数置換積分部分分数分解2025/4/261. 問題の内容(1) ∫cosxsinx(sinx+1)dx\int \frac{\cos x}{\sin x(\sin x + 1)} dx∫sinx(sinx+1)cosxdx(4) ∫11−sinxdx\int \frac{1}{1-\sin x} dx∫1−sinx1dx2. 解き方の手順(1)u=sinxu = \sin xu=sinx と置換すると、dudx=cosx\frac{du}{dx} = \cos xdxdu=cosx より du=cosxdxdu = \cos x dxdu=cosxdxとなる。したがって、∫cosxsinx(sinx+1)dx=∫1u(u+1)du\int \frac{\cos x}{\sin x(\sin x + 1)} dx = \int \frac{1}{u(u+1)} du∫sinx(sinx+1)cosxdx=∫u(u+1)1duここで、部分分数分解を行う。1u(u+1)=Au+Bu+1\frac{1}{u(u+1)} = \frac{A}{u} + \frac{B}{u+1}u(u+1)1=uA+u+1B1=A(u+1)+Bu1 = A(u+1) + Bu1=A(u+1)+Bu1=(A+B)u+A1 = (A+B)u + A1=(A+B)u+AA=1A = 1A=1, A+B=0A+B = 0A+B=0 より B=−1B = -1B=−11u(u+1)=1u−1u+1\frac{1}{u(u+1)} = \frac{1}{u} - \frac{1}{u+1}u(u+1)1=u1−u+11∫1u(u+1)du=∫(1u−1u+1)du=ln∣u∣−ln∣u+1∣+C\int \frac{1}{u(u+1)} du = \int \left(\frac{1}{u} - \frac{1}{u+1}\right) du = \ln |u| - \ln |u+1| + C∫u(u+1)1du=∫(u1−u+11)du=ln∣u∣−ln∣u+1∣+C=ln∣sinx∣−ln∣sinx+1∣+C=\ln |\sin x| - \ln |\sin x + 1| + C=ln∣sinx∣−ln∣sinx+1∣+C=ln∣sinxsinx+1∣+C=\ln \left| \frac{\sin x}{\sin x + 1} \right| + C=lnsinx+1sinx+C(4)∫11−sinxdx=∫1+sinx(1−sinx)(1+sinx)dx=∫1+sinx1−sin2xdx=∫1+sinxcos2xdx\int \frac{1}{1-\sin x} dx = \int \frac{1+\sin x}{(1-\sin x)(1+\sin x)} dx = \int \frac{1+\sin x}{1-\sin^2 x} dx = \int \frac{1+\sin x}{\cos^2 x} dx∫1−sinx1dx=∫(1−sinx)(1+sinx)1+sinxdx=∫1−sin2x1+sinxdx=∫cos2x1+sinxdx=∫1cos2xdx+∫sinxcos2xdx=\int \frac{1}{\cos^2 x} dx + \int \frac{\sin x}{\cos^2 x} dx=∫cos2x1dx+∫cos2xsinxdx=∫sec2xdx+∫sinxcos2xdx=\int \sec^2 x dx + \int \frac{\sin x}{\cos^2 x} dx=∫sec2xdx+∫cos2xsinxdxここで、t=cosxt = \cos xt=cosx と置換すると、dtdx=−sinx\frac{dt}{dx} = -\sin xdxdt=−sinx より dt=−sinxdxdt = -\sin x dxdt=−sinxdxとなる。∫sinxcos2xdx=∫−1t2dt=∫−t−2dt=t−1+C1=1cosx+C1\int \frac{\sin x}{\cos^2 x} dx = \int \frac{-1}{t^2} dt = \int -t^{-2} dt = t^{-1} + C_1 = \frac{1}{\cos x} + C_1∫cos2xsinxdx=∫t2−1dt=∫−t−2dt=t−1+C1=cosx1+C1∫sec2xdx=tanx+C2\int \sec^2 x dx = \tan x + C_2∫sec2xdx=tanx+C2したがって、∫11−sinxdx=tanx+1cosx+C=tanx+secx+C\int \frac{1}{1-\sin x} dx = \tan x + \frac{1}{\cos x} + C = \tan x + \sec x + C∫1−sinx1dx=tanx+cosx1+C=tanx+secx+C3. 最終的な答え(1) ln∣sinxsinx+1∣+C\ln \left| \frac{\sin x}{\sin x + 1} \right| + Clnsinx+1sinx+C(4) tanx+secx+C\tan x + \sec x + Ctanx+secx+C