定積分 $\int_{-2}^{2} (a_3x^3 + a_2x^2 + a_1x + a_0) dx$ を計算します。解析学定積分積分多項式2025/4/261. 問題の内容定積分 ∫−22(a3x3+a2x2+a1x+a0)dx\int_{-2}^{2} (a_3x^3 + a_2x^2 + a_1x + a_0) dx∫−22(a3x3+a2x2+a1x+a0)dx を計算します。2. 解き方の手順まず、多項式を項ごとに積分します。∫xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C∫xndx=n+1xn+1+C を用いて各項を積分します。∫−22(a3x3+a2x2+a1x+a0)dx=a3∫−22x3dx+a2∫−22x2dx+a1∫−22xdx+a0∫−22dx\int_{-2}^{2} (a_3x^3 + a_2x^2 + a_1x + a_0) dx = a_3 \int_{-2}^{2} x^3 dx + a_2 \int_{-2}^{2} x^2 dx + a_1 \int_{-2}^{2} x dx + a_0 \int_{-2}^{2} dx∫−22(a3x3+a2x2+a1x+a0)dx=a3∫−22x3dx+a2∫−22x2dx+a1∫−22xdx+a0∫−22dx次に、それぞれの積分を計算します。∫−22x3dx=[x44]−22=244−(−2)44=164−164=0\int_{-2}^{2} x^3 dx = \left[ \frac{x^4}{4} \right]_{-2}^{2} = \frac{2^4}{4} - \frac{(-2)^4}{4} = \frac{16}{4} - \frac{16}{4} = 0∫−22x3dx=[4x4]−22=424−4(−2)4=416−416=0∫−22x2dx=[x33]−22=233−(−2)33=83−−83=163\int_{-2}^{2} x^2 dx = \left[ \frac{x^3}{3} \right]_{-2}^{2} = \frac{2^3}{3} - \frac{(-2)^3}{3} = \frac{8}{3} - \frac{-8}{3} = \frac{16}{3}∫−22x2dx=[3x3]−22=323−3(−2)3=38−3−8=316∫−22xdx=[x22]−22=222−(−2)22=42−42=0\int_{-2}^{2} x dx = \left[ \frac{x^2}{2} \right]_{-2}^{2} = \frac{2^2}{2} - \frac{(-2)^2}{2} = \frac{4}{2} - \frac{4}{2} = 0∫−22xdx=[2x2]−22=222−2(−2)2=24−24=0∫−22dx=[x]−22=2−(−2)=4\int_{-2}^{2} dx = \left[ x \right]_{-2}^{2} = 2 - (-2) = 4∫−22dx=[x]−22=2−(−2)=4したがって、∫−22(a3x3+a2x2+a1x+a0)dx=a3(0)+a2(163)+a1(0)+a0(4)=163a2+4a0\int_{-2}^{2} (a_3x^3 + a_2x^2 + a_1x + a_0) dx = a_3(0) + a_2(\frac{16}{3}) + a_1(0) + a_0(4) = \frac{16}{3}a_2 + 4a_0∫−22(a3x3+a2x2+a1x+a0)dx=a3(0)+a2(316)+a1(0)+a0(4)=316a2+4a03. 最終的な答え163a2+4a0\frac{16}{3}a_2 + 4a_0316a2+4a0