空欄に当てはまる式を求める問題です。 $\square \times \frac{1}{5}x^3y^2 \div (-\frac{2}{5}x^3y^3)^2 = \frac{15}{2x^3y^2}$代数学式の計算分数式指数法則2025/4/261. 問題の内容空欄に当てはまる式を求める問題です。□×15x3y2÷(−25x3y3)2=152x3y2\square \times \frac{1}{5}x^3y^2 \div (-\frac{2}{5}x^3y^3)^2 = \frac{15}{2x^3y^2}□×51x3y2÷(−52x3y3)2=2x3y2152. 解き方の手順まず、与えられた式を整理します。□×15x3y2÷(−25x3y3)2=152x3y2\square \times \frac{1}{5}x^3y^2 \div (-\frac{2}{5}x^3y^3)^2 = \frac{15}{2x^3y^2}□×51x3y2÷(−52x3y3)2=2x3y215□×15x3y2÷425x6y6=152x3y2\square \times \frac{1}{5}x^3y^2 \div \frac{4}{25}x^6y^6 = \frac{15}{2x^3y^2}□×51x3y2÷254x6y6=2x3y215□×15x3y2×254x6y6=152x3y2\square \times \frac{1}{5}x^3y^2 \times \frac{25}{4x^6y^6} = \frac{15}{2x^3y^2}□×51x3y2×4x6y625=2x3y215□×54x3y4=152x3y2\square \times \frac{5}{4x^3y^4} = \frac{15}{2x^3y^2}□×4x3y45=2x3y215両辺に4x3y45\frac{4x^3y^4}{5}54x3y4を掛けます。□=152x3y2×4x3y45\square = \frac{15}{2x^3y^2} \times \frac{4x^3y^4}{5}□=2x3y215×54x3y4□=15×4x3y42×5x3y2\square = \frac{15 \times 4 x^3 y^4}{2 \times 5 x^3 y^2}□=2×5x3y215×4x3y4□=60x3y410x3y2\square = \frac{60x^3y^4}{10x^3y^2}□=10x3y260x3y4□=6y2\square = 6y^2□=6y23. 最終的な答え6y26y^26y2