点$(-1, -3)$を点$(2, -1)$について対称移動した点の座標を求める。

幾何学座標対称移動中点
2025/4/26

1. 問題の内容

(1,3)(-1, -3)を点(2,1)(2, -1)について対称移動した点の座標を求める。

2. 解き方の手順

(1,3)(-1, -3)を点(2,1)(2, -1)について対称移動した点を(x,y)(x, y)とすると、点(2,1)(2, -1)は線分(1,3)(-1, -3)(x,y)(x, y)の中点になる。中点の座標は各座標の平均で求められる。
したがって、
1+x2=2 \frac{-1 + x}{2} = 2
3+y2=1 \frac{-3 + y}{2} = -1
上記の2つの方程式を解く。
1つ目の式より、
1+x=4-1 + x = 4
x=5x = 5
2つ目の式より、
3+y=2-3 + y = -2
y=1y = 1
よって、対称移動した点の座標は(5,1)(5, 1)である。

3. 最終的な答え

(5, 1)

「幾何学」の関連問題

2点 $A(6, -4, 1)$ と $B(4, -5, 3)$ を通る直線の方程式を求める問題です。

空間ベクトル直線の方程式3次元
2025/4/26

点 $(3, -4, 2)$ を通り、ベクトル $\vec{a} = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix}$ に平行な直線を求めます。

ベクトル直線空間ベクトルパラメータ表示
2025/4/26

点 $(3, -4, 2)$ を通り、ベクトル $\vec{a} = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix}$ に平行な直線を求める問題です。

ベクトル空間ベクトル直線の方程式ベクトル方程式
2025/4/26

点(3, 6, -2)を通り、ベクトル$\vec{a} = \begin{pmatrix} -3 \\ 2 \\ 3 \end{pmatrix}$に平行な直線を求める。

ベクトル直線空間ベクトル
2025/4/26

点$(1, 2, -3)$を通り、ベクトル $\vec{a} = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$ に直交する平面の方程式を求め、その平面と原点お...

ベクトル平面距離空間ベクトル
2025/4/26

点$(-1, 3, 2)$を通り、ベクトル$\vec{a} = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix}$に直交する平面を求め、求めた平面と原点$(0,0,...

ベクトル平面空間ベクトル距離
2025/4/26

平面上の任意の点を$(x, y, z)$とする。このとき、ベクトル$\begin{pmatrix} x - (-1) \\ y - 3 \\ z - 2 \end{pmatrix}$は、平面に平行なベ...

空間ベクトル平面の方程式直線の方程式距離
2025/4/26

三角形OABにおいて、辺OAを1:2に内分する点をCとする。辺ABを1:2に内分する点をDとする。直線BCと直線ODの交点をEとする。 $|OB| = 4$, $OA \cdot OB = 6$とする...

ベクトル三角形内分面積内積
2025/4/26

問題文は、平面上の3点A, B, Cに関する条件が与えられており、点Aと点Bは定点、点CはBC = 6を満たすように動く点である。線分ACの垂直二等分線と線分BCの交点をPとする。このとき、点Pがある...

楕円軌跡垂直二等分線座標平面
2025/4/26

三角形OABにおいて、辺OAを1:2に内分する点をC、辺ABを1:2に内分する点をDとする。直線BCと直線ODの交点をEとする。ベクトルOEを、ODを用いて表し、またOBとBCを用いて表す。その後、内...

ベクトル内分点内積三角形面積
2025/4/26