問題は、$-2a + 7a$ を計算することです。

代数学一次式計算同類項
2025/4/26

1. 問題の内容

問題は、2a+7a-2a + 7a を計算することです。

2. 解き方の手順

この式は、aa という変数を持つ2つの項の和です。
同じ変数を持つ項同士は係数を足し合わせることで計算できます。
具体的には、aa の係数はそれぞれ 2-277 です。これらの係数を足し合わせます。
2+7=5-2 + 7 = 5
したがって、 2a+7a-2a + 7a5a5a となります。

3. 最終的な答え

5a5a

「代数学」の関連問題

与えられた6つの式を因数分解する問題です。

因数分解二次式置換
2025/4/27

与えられた式 $a^2 - 2ab + b^2 - 9c^2$ を因数分解してください。

因数分解式の展開代数
2025/4/27

問題は4つあります。ここでは、問題(2)と(3)を解きます。 (2) $\frac{3}{2\cdot 5} + \frac{3}{5\cdot 8} + \frac{3}{8\cdot 11} + ...

級数部分分数分解有理化シグマ
2025/4/27

次の方程式を解いてください: $0.125x - 3\frac{1}{2} - \frac{5}{8}x - 2\frac{5}{6} = 0$

一次方程式分数計算
2025/4/27

$a, b, c$は整数とする。4次方程式 $x^4 + ax^3 + bx^2 + cx + 3 = 0$ の実数解が1と3となるとき、$a$の最大値と最小値を求める。

多項式4次方程式因数分解判別式実数解最大値最小値
2025/4/27

与えられた式 $x^2 - (a+3b)x - 2(a+3b)^2$ を因数分解する。

因数分解二次式式変形
2025/4/27

与えられた二次方程式を解く問題です。 $x^2 - (a+3b)x - (a+3b)^2 = 0$

二次方程式解の公式代数
2025/4/27

(1) 第3項が12、第7項が28である等差数列について、第1項から第10項までの和を求めよ。 (2) 第3項が4で第6項が$-8\sqrt{2}$である等比数列の一般項を求めよ。ただし、公比は実数と...

数列等差数列等比数列一般項
2025/4/27

与えられた式 $4a^2 - (a+b)^2$ を因数分解する問題です。

因数分解代数式展開
2025/4/27

数列 $\{a_n\}$ が $a_1 = 3$, $a_{n+1} = 3a_n + n^2 + 2n$ で定義されている。数列 $\{b_n\}$ を $b_n = a_{n+1} - a_n$ ...

数列漸化式等比数列一般項
2025/4/27