与えられた式 $2y - 3(5y - 3)$ を簡略化します。代数学式の簡略化分配法則同類項2025/4/261. 問題の内容与えられた式 2y−3(5y−3)2y - 3(5y - 3)2y−3(5y−3) を簡略化します。2. 解き方の手順まず、分配法則を用いて −3-3−3 を括弧の中の各項に掛けます。2y−3(5y−3)=2y−15y+92y - 3(5y - 3) = 2y - 15y + 92y−3(5y−3)=2y−15y+9次に、同類項をまとめます。2y2y2y と −15y-15y−15y をまとめます。2y−15y+9=(2−15)y+92y - 15y + 9 = (2 - 15)y + 92y−15y+9=(2−15)y+9(2−15)y+9=−13y+9(2 - 15)y + 9 = -13y + 9(2−15)y+9=−13y+93. 最終的な答え−13y+9-13y + 9−13y+9