$x$ についての方程式 $3x - a = 10$ の解が $x = 2$ であるとき、$a$ の値を求めなさい。

代数学一次方程式代入
2025/4/27

1. 問題の内容

xx についての方程式 3xa=103x - a = 10 の解が x=2x = 2 であるとき、aa の値を求めなさい。

2. 解き方の手順

x=2x = 2 を方程式 3xa=103x - a = 10 に代入します。
3×2a=103 \times 2 - a = 10
6a=106 - a = 10
a=106-a = 10 - 6
a=4-a = 4
a=4a = -4

3. 最終的な答え

a=4a = -4

「代数学」の関連問題

二項係数の定義 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ を用いて、以下の4つの等式が成り立つことを示す。 1. $\binom{n}{0} = 1, \binom{n...

二項係数組み合わせ
2025/4/28

$(x+y)^7$ を展開しなさい。

二項定理展開多項式
2025/4/28

与えられた連立方程式を解いて、$x$ と $y$ の値を求める問題です。 連立方程式は以下の通りです。 $0.1x - 0.3y = 1$ $2x - \frac{y+2}{3} = 8$

連立方程式一次方程式代入法方程式の解
2025/4/28

与えられた方程式は、 $2x - y - 1 = \frac{1}{2}(4x - 3y) = \frac{1}{3}(x + 3y - 10)$ この方程式から$x$と$y$の値を求めます。

連立方程式一次方程式
2025/4/28

与えられた3つの式を因数分解する問題です。 (1) $(x^2-4xy)^2 - 16y^4$ (2) $(x+1)^3 - 8$ (3) $(a+b)^3 - (a-c)^3$

因数分解多項式展開
2025/4/28

次の式を因数分解してください。 $(x^2 - 4xy)^2 - 16y^4$

因数分解多項式二次式
2025/4/28

与えられた連立方程式を解いて、$x$ と $y$ の値を求めます。連立方程式は次の通りです。 $\frac{x}{14} - \frac{y}{16} = 1$ $\frac{2}{5}x + \fr...

連立方程式方程式代数
2025/4/28

与えられた二つの式を因数分解します。 (1) $(x^2 - 4xy)^2 - 16y^4$ (2) $(x+1)^3 - 8$

因数分解多項式式の展開
2025/4/28

与えられた数式 $2(x+1)^3 - 8$ を展開し、簡略化することを求められています。

式の展開多項式因数分解簡略化
2025/4/28

与えられた連立方程式を解く問題です。 連立方程式は以下の通りです。 $3(x-1) = 4(y-1)$ $x-1 = 2(y-6)$

連立方程式代入法方程式
2025/4/28