与えられた3つの式を展開する問題です。 (1) $(a+b-c)^2$ (2) $(x+y+1)^2$ (3) $(a-b+2c)^2$代数学展開多項式2025/4/271. 問題の内容与えられた3つの式を展開する問題です。(1) (a+b−c)2(a+b-c)^2(a+b−c)2(2) (x+y+1)2(x+y+1)^2(x+y+1)2(3) (a−b+2c)2(a-b+2c)^2(a−b+2c)22. 解き方の手順展開公式 (A+B+C)2=A2+B2+C2+2AB+2BC+2CA(A+B+C)^2 = A^2 + B^2 + C^2 + 2AB + 2BC + 2CA(A+B+C)2=A2+B2+C2+2AB+2BC+2CA を利用します。(1) (a+b−c)2(a+b-c)^2(a+b−c)2 の展開A=aA = aA=a, B=bB = bB=b, C=−cC = -cC=−c とすると、(a+b−c)2=a2+b2+(−c)2+2ab+2b(−c)+2(−c)a(a+b-c)^2 = a^2 + b^2 + (-c)^2 + 2ab + 2b(-c) + 2(-c)a(a+b−c)2=a2+b2+(−c)2+2ab+2b(−c)+2(−c)a=a2+b2+c2+2ab−2bc−2ca= a^2 + b^2 + c^2 + 2ab - 2bc - 2ca=a2+b2+c2+2ab−2bc−2ca(2) (x+y+1)2(x+y+1)^2(x+y+1)2 の展開A=xA = xA=x, B=yB = yB=y, C=1C = 1C=1 とすると、(x+y+1)2=x2+y2+12+2xy+2y(1)+2(1)x(x+y+1)^2 = x^2 + y^2 + 1^2 + 2xy + 2y(1) + 2(1)x(x+y+1)2=x2+y2+12+2xy+2y(1)+2(1)x=x2+y2+1+2xy+2y+2x= x^2 + y^2 + 1 + 2xy + 2y + 2x=x2+y2+1+2xy+2y+2x=x2+y2+2xy+2x+2y+1= x^2 + y^2 + 2xy + 2x + 2y + 1=x2+y2+2xy+2x+2y+1(3) (a−b+2c)2(a-b+2c)^2(a−b+2c)2 の展開A=aA = aA=a, B=−bB = -bB=−b, C=2cC = 2cC=2c とすると、(a−b+2c)2=a2+(−b)2+(2c)2+2a(−b)+2(−b)(2c)+2(2c)a(a-b+2c)^2 = a^2 + (-b)^2 + (2c)^2 + 2a(-b) + 2(-b)(2c) + 2(2c)a(a−b+2c)2=a2+(−b)2+(2c)2+2a(−b)+2(−b)(2c)+2(2c)a=a2+b2+4c2−2ab−4bc+4ca= a^2 + b^2 + 4c^2 - 2ab - 4bc + 4ca=a2+b2+4c2−2ab−4bc+4ca3. 最終的な答え(1) a2+b2+c2+2ab−2bc−2caa^2 + b^2 + c^2 + 2ab - 2bc - 2caa2+b2+c2+2ab−2bc−2ca(2) x2+y2+2xy+2x+2y+1x^2 + y^2 + 2xy + 2x + 2y + 1x2+y2+2xy+2x+2y+1(3) a2+b2+4c2−2ab−4bc+4caa^2 + b^2 + 4c^2 - 2ab - 4bc + 4caa2+b2+4c2−2ab−4bc+4ca