放物線 $y=x^2$ と直線 $y=-x$ の交点の座標を求める問題です。答えは (○, △) の形で入力し、複数の解がある場合は間に「,」を入れて続けて入力する必要があります。

代数学放物線直線交点連立方程式二次方程式
2025/4/29

1. 問題の内容

放物線 y=x2y=x^2 と直線 y=xy=-x の交点の座標を求める問題です。答えは (○, △) の形で入力し、複数の解がある場合は間に「,」を入れて続けて入力する必要があります。

2. 解き方の手順

放物線と直線の交点を求めるには、それぞれの式を連立させて解きます。
y=x2y=x^2y=xy=-xを連立させると、
x2=xx^2 = -x
x2+x=0x^2 + x = 0
x(x+1)=0x(x+1) = 0
よって、x=0x=0またはx=1x=-1となります。
x=0x=0のとき、y=xy=-xに代入すると、y=0=0y=-0=0なので、交点の座標は(0,0)(0, 0)です。
x=1x=-1のとき、y=xy=-xに代入すると、y=(1)=1y=-(-1)=1なので、交点の座標は(1,1)(-1, 1)です。

3. 最終的な答え

(0,0),(-1,1)

「代数学」の関連問題

$(a+b+c)^{10}$ の展開式における $a^5b^2c^3$ の項の係数を求める。

多項定理展開係数
2025/4/29

多項式 $x^3 + 4x^2 + 4x - 2$ を多項式 $B$ で割ると、商が $x+3$、余りが $2x+1$ となる。このとき、$B$ を求めよ。

多項式多項式の割り算代数計算
2025/4/29

$\sqrt{x^2+8x+16}$ を、与えられた条件 $x+4 \geq 0$ および $x+4 < 0$ のそれぞれの場合について、$x$の多項式で表す。

平方根絶対値因数分解不等式
2025/4/29

$x = \sqrt{2} + 1$ のとき、以下の式の値を求めます。 (1) $x^2 - 2x$ (2) $x^3 - x^2$

式の計算代入展開平方根
2025/4/29

問題は、$70*\frac{1}{2-\sqrt{3}}$ の整数の部分を $a$、小数部分を $b$ とするとき、以下の2つの問いに答えるものです。 (1) $a$ と $b$ の値を求める。 (2...

式の計算有理化平方根
2025/4/29

$70 \times \frac{1}{2-\sqrt{3}}$ の整数の部分を $a$、小数部分を $b$ とする。 (1) $a, b$ の値を求めよ。 (2) $a+2b+b^2+1$ の値を求...

数の計算有理化平方根整数の部分小数部分
2025/4/29

問題は、与えられた数 $70 \times \frac{1}{2-\sqrt{3}}$ の整数の部分を $a$、小数の部分を $b$ とするとき、$a$ と $b$ の値を求め、さらに $a+2b+b...

無理数有理化式の計算整数部分小数部分
2025/4/29

与えられた式 $(x+3)^2 = x^2 + \boxed{ア}x + \boxed{イ}$ を展開し、空欄アとイに当てはまる数字を求める問題です。

展開二次式数式展開
2025/4/29

$A = 3x^2 + 4x - 1$、 $B = x^2 - 2x - 5$ のとき、$A - B$ を計算し、 $x^2$、 $x$ 、定数項の係数を求めよ。

多項式式の計算展開同類項
2025/4/29

問題は、$(a^2 + 2ab - 3b) \times 3ab$ を計算し、指定された形式 $3a^3b + \boxed{\phantom{XX}} a^2b^2 - \boxed{\phanto...

多項式の展開分配法則式変形
2025/4/29