$x = \sqrt{2} + 1$ のとき、以下の式の値を求めます。 (1) $x^2 - 2x$ (2) $x^3 - x^2$代数学式の計算代入展開平方根2025/4/291. 問題の内容x=2+1x = \sqrt{2} + 1x=2+1 のとき、以下の式の値を求めます。(1) x2−2xx^2 - 2xx2−2x(2) x3−x2x^3 - x^2x3−x22. 解き方の手順(1) x2−2xx^2 - 2xx2−2x の場合:x=2+1x = \sqrt{2} + 1x=2+1 を式に代入します。x2−2x=(2+1)2−2(2+1)x^2 - 2x = (\sqrt{2} + 1)^2 - 2(\sqrt{2} + 1)x2−2x=(2+1)2−2(2+1)(2+1)2=(2)2+22+1=2+22+1=3+22(\sqrt{2} + 1)^2 = (\sqrt{2})^2 + 2\sqrt{2} + 1 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2}(2+1)2=(2)2+22+1=2+22+1=3+222(2+1)=22+22(\sqrt{2} + 1) = 2\sqrt{2} + 22(2+1)=22+2したがって、x2−2x=(3+22)−(22+2)=3+22−22−2=1x^2 - 2x = (3 + 2\sqrt{2}) - (2\sqrt{2} + 2) = 3 + 2\sqrt{2} - 2\sqrt{2} - 2 = 1x2−2x=(3+22)−(22+2)=3+22−22−2=1(2) x3−x2x^3 - x^2x3−x2 の場合:x=2+1x = \sqrt{2} + 1x=2+1 を式に代入します。x3−x2=x2(x−1)x^3 - x^2 = x^2(x - 1)x3−x2=x2(x−1)まず、x−1x-1x−1 を求めます。x−1=(2+1)−1=2x - 1 = (\sqrt{2} + 1) - 1 = \sqrt{2}x−1=(2+1)−1=2次に、x2x^2x2を求めます。((1)で計算済みですが、再度計算します。)x2=(2+1)2=3+22x^2 = (\sqrt{2} + 1)^2 = 3 + 2\sqrt{2}x2=(2+1)2=3+22したがって、x3−x2=x2(x−1)=(3+22)2=32+2(2)2=32+4=4+32x^3 - x^2 = x^2(x - 1) = (3 + 2\sqrt{2})\sqrt{2} = 3\sqrt{2} + 2(\sqrt{2})^2 = 3\sqrt{2} + 4 = 4 + 3\sqrt{2}x3−x2=x2(x−1)=(3+22)2=32+2(2)2=32+4=4+323. 最終的な答え(1) x2−2x=1x^2 - 2x = 1x2−2x=1(2) x3−x2=4+32x^3 - x^2 = 4 + 3\sqrt{2}x3−x2=4+32