$(\sqrt{2} + 1)(\sqrt{2} - 3)$ を計算します。代数学式の展開平方根計算2025/4/291. 問題の内容(2+1)(2−3)(\sqrt{2} + 1)(\sqrt{2} - 3)(2+1)(2−3) を計算します。2. 解き方の手順分配法則を使って展開します。(2+1)(2−3)=2×2+2×(−3)+1×2+1×(−3)(\sqrt{2} + 1)(\sqrt{2} - 3) = \sqrt{2} \times \sqrt{2} + \sqrt{2} \times (-3) + 1 \times \sqrt{2} + 1 \times (-3)(2+1)(2−3)=2×2+2×(−3)+1×2+1×(−3)計算を進めます。2×2=2\sqrt{2} \times \sqrt{2} = 22×2=22×(−3)=−32\sqrt{2} \times (-3) = -3\sqrt{2}2×(−3)=−321×2=21 \times \sqrt{2} = \sqrt{2}1×2=21×(−3)=−31 \times (-3) = -31×(−3)=−3上記の計算結果を代入します。(2+1)(2−3)=2−32+2−3(\sqrt{2} + 1)(\sqrt{2} - 3) = 2 - 3\sqrt{2} + \sqrt{2} - 3(2+1)(2−3)=2−32+2−3同類項をまとめます。2−3=−12 - 3 = -12−3=−1−32+2=−22-3\sqrt{2} + \sqrt{2} = -2\sqrt{2}−32+2=−22最終的な計算を行います。(2+1)(2−3)=−1−22(\sqrt{2} + 1)(\sqrt{2} - 3) = -1 - 2\sqrt{2}(2+1)(2−3)=−1−223. 最終的な答え−1−22-1 - 2\sqrt{2}−1−22