$\sin \theta + \cos \theta = \frac{1}{5}$ のとき、次の式の値を求めます。 (i) $\sin \theta \cos \theta$ (ii) $\sin^3 \theta + \cos^3 \theta$代数学三角関数式の計算加法定理2025/4/271. 問題の内容sinθ+cosθ=15\sin \theta + \cos \theta = \frac{1}{5}sinθ+cosθ=51 のとき、次の式の値を求めます。(i) sinθcosθ\sin \theta \cos \thetasinθcosθ(ii) sin3θ+cos3θ\sin^3 \theta + \cos^3 \thetasin3θ+cos3θ2. 解き方の手順(i) sinθ+cosθ=15\sin \theta + \cos \theta = \frac{1}{5}sinθ+cosθ=51 の両辺を2乗します。(sinθ+cosθ)2=(15)2(\sin \theta + \cos \theta)^2 = (\frac{1}{5})^2(sinθ+cosθ)2=(51)2sin2θ+2sinθcosθ+cos2θ=125\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{1}{25}sin2θ+2sinθcosθ+cos2θ=251sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1sin2θ+cos2θ=1 より、1+2sinθcosθ=1251 + 2 \sin \theta \cos \theta = \frac{1}{25}1+2sinθcosθ=2512sinθcosθ=125−1=125−2525=−24252 \sin \theta \cos \theta = \frac{1}{25} - 1 = \frac{1}{25} - \frac{25}{25} = -\frac{24}{25}2sinθcosθ=251−1=251−2525=−2524sinθcosθ=−1225\sin \theta \cos \theta = -\frac{12}{25}sinθcosθ=−2512(ii) sin3θ+cos3θ=(sinθ+cosθ)(sin2θ−sinθcosθ+cos2θ)\sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta)sin3θ+cos3θ=(sinθ+cosθ)(sin2θ−sinθcosθ+cos2θ)sin3θ+cos3θ=(sinθ+cosθ)(sin2θ+cos2θ−sinθcosθ)\sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta + \cos^2 \theta - \sin \theta \cos \theta)sin3θ+cos3θ=(sinθ+cosθ)(sin2θ+cos2θ−sinθcosθ)sin3θ+cos3θ=(15)(1−(−1225))=(15)(1+1225)=(15)(2525+1225)=(15)(3725)=37125\sin^3 \theta + \cos^3 \theta = (\frac{1}{5})(1 - (-\frac{12}{25})) = (\frac{1}{5})(1 + \frac{12}{25}) = (\frac{1}{5})(\frac{25}{25} + \frac{12}{25}) = (\frac{1}{5})(\frac{37}{25}) = \frac{37}{125}sin3θ+cos3θ=(51)(1−(−2512))=(51)(1+2512)=(51)(2525+2512)=(51)(2537)=125373. 最終的な答え(i) sinθcosθ=−1225\sin \theta \cos \theta = -\frac{12}{25}sinθcosθ=−2512(ii) sin3θ+cos3θ=37125\sin^3 \theta + \cos^3 \theta = \frac{37}{125}sin3θ+cos3θ=12537