与えられた15個の関数を微分する問題です。解析学微分関数の微分2025/4/281. 問題の内容与えられた15個の関数を微分する問題です。2. 解き方の手順微分公式を用いて各関数を微分します。(1) y=x4y = x^4y=x4y′=4x4−1=4x3y' = 4x^{4-1} = 4x^3y′=4x4−1=4x3(2) y=x6y = x^6y=x6y′=6x6−1=6x5y' = 6x^{6-1} = 6x^5y′=6x6−1=6x5(3) y=x100y = x^{100}y=x100y′=100x100−1=100x99y' = 100x^{100-1} = 100x^{99}y′=100x100−1=100x99(4) y=x=x1/2y = \sqrt{x} = x^{1/2}y=x=x1/2y′=12x12−1=12x−12=12xy' = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}y′=21x21−1=21x−21=2x1(5) y=x34=x3/4y = \sqrt[4]{x^3} = x^{3/4}y=4x3=x3/4y′=34x34−1=34x−14=34x4y' = \frac{3}{4}x^{\frac{3}{4}-1} = \frac{3}{4}x^{-\frac{1}{4}} = \frac{3}{4\sqrt[4]{x}}y′=43x43−1=43x−41=44x3(6) y=1x=x−1y = \frac{1}{x} = x^{-1}y=x1=x−1y′=−1x−1−1=−x−2=−1x2y' = -1x^{-1-1} = -x^{-2} = -\frac{1}{x^2}y′=−1x−1−1=−x−2=−x21(7) y=1x2=x−2y = \frac{1}{x^2} = x^{-2}y=x21=x−2y′=−2x−2−1=−2x−3=−2x3y' = -2x^{-2-1} = -2x^{-3} = -\frac{2}{x^3}y′=−2x−2−1=−2x−3=−x32(8) y=1x4=x−4y = \frac{1}{x^4} = x^{-4}y=x41=x−4y′=−4x−4−1=−4x−5=−4x5y' = -4x^{-4-1} = -4x^{-5} = -\frac{4}{x^5}y′=−4x−4−1=−4x−5=−x54(9) y=1x3=1x1/3=x−1/3y = \frac{1}{\sqrt[3]{x}} = \frac{1}{x^{1/3}} = x^{-1/3}y=3x1=x1/31=x−1/3y′=−13x−13−1=−13x−43=−13xx3y' = -\frac{1}{3}x^{-\frac{1}{3}-1} = -\frac{1}{3}x^{-\frac{4}{3}} = -\frac{1}{3x\sqrt[3]{x}}y′=−31x−31−1=−31x−34=−3x3x1(10) y=1xx=1x3/2=x−3/2y = \frac{1}{x\sqrt{x}} = \frac{1}{x^{3/2}} = x^{-3/2}y=xx1=x3/21=x−3/2y′=−32x−32−1=−32x−52=−32x2xy' = -\frac{3}{2}x^{-\frac{3}{2}-1} = -\frac{3}{2}x^{-\frac{5}{2}} = -\frac{3}{2x^2\sqrt{x}}y′=−23x−23−1=−23x−25=−2x2x3(11) y=sinxy = \sin xy=sinxy′=cosxy' = \cos xy′=cosx(12) y=cosxy = \cos xy=cosxy′=−sinxy' = -\sin xy′=−sinx(13) y=2xy = 2^xy=2xy′=2xln2y' = 2^x \ln 2y′=2xln2(14) y=exy = e^xy=exy′=exy' = e^xy′=ex(15) y=logxy = \log xy=logx (底がe、つまり自然対数)y′=1xy' = \frac{1}{x}y′=x13. 最終的な答え(1) y′=4x3y' = 4x^3y′=4x3(2) y′=6x5y' = 6x^5y′=6x5(3) y′=100x99y' = 100x^{99}y′=100x99(4) y′=12xy' = \frac{1}{2\sqrt{x}}y′=2x1(5) y′=34x4y' = \frac{3}{4\sqrt[4]{x}}y′=44x3(6) y′=−1x2y' = -\frac{1}{x^2}y′=−x21(7) y′=−2x3y' = -\frac{2}{x^3}y′=−x32(8) y′=−4x5y' = -\frac{4}{x^5}y′=−x54(9) y′=−13xx3y' = -\frac{1}{3x\sqrt[3]{x}}y′=−3x3x1(10) y′=−32x2xy' = -\frac{3}{2x^2\sqrt{x}}y′=−2x2x3(11) y′=cosxy' = \cos xy′=cosx(12) y′=−sinxy' = -\sin xy′=−sinx(13) y′=2xln2y' = 2^x \ln 2y′=2xln2(14) y′=exy' = e^xy′=ex(15) y′=1xy' = \frac{1}{x}y′=x1