与えられた関数を積分する問題です。 $\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx$

解析学積分不定積分関数
2025/3/18

1. 問題の内容

与えられた関数を積分する問題です。
(5x43x2+3x2)dx\int (5x^4 - 3x^2 + \frac{3\sqrt{x}}{2}) dx

2. 解き方の手順

積分は、和の積分は積分の和であるという性質と、xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C (ただし n1n \neq -1)を利用して計算します。
まず、積分を各項に分けます。
5x4dx3x2dx+3x2dx\int 5x^4 dx - \int 3x^2 dx + \int \frac{3\sqrt{x}}{2} dx
定数は積分の外に出せるので、
5x4dx3x2dx+32xdx5 \int x^4 dx - 3 \int x^2 dx + \frac{3}{2} \int \sqrt{x} dx
x\sqrt{x}x12x^{\frac{1}{2}} と書き換えられるので、
5x4dx3x2dx+32x12dx5 \int x^4 dx - 3 \int x^2 dx + \frac{3}{2} \int x^{\frac{1}{2}} dx
それぞれの項を積分します。
5(x55)3(x33)+32(x3232)+C5 (\frac{x^5}{5}) - 3 (\frac{x^3}{3}) + \frac{3}{2} (\frac{x^{\frac{3}{2}}}{\frac{3}{2}}) + C
整理すると、
x5x3+x32+Cx^5 - x^3 + x^{\frac{3}{2}} + C
x32x^{\frac{3}{2}}xxx\sqrt{x} と書き換えられます。
x5x3+xx+Cx^5 - x^3 + x\sqrt{x} + C

3. 最終的な答え

x5x3+xx+Cx^5 - x^3 + x\sqrt{x} + C

「解析学」の関連問題

与えられた二次関数 $f(x) = -\frac{1}{2}x^2 + 4x + 1$ について、以下の2つの変化の割合を求め、さらに $h$ を0に近づけたときの $x=2$ におけるグラフの接線の...

二次関数変化の割合微分接線の傾き
2025/7/14

次の関数 $f(x)$ が $x=0$ で微分可能かどうかを調べる問題です。 (1) $f(x) = |x(x-2)|$ (2) $f(x) = |x^3|$

微分可能性絶対値関数極限
2025/7/14

直線 $y = \sqrt{3}x + 5$ となす角が $\pm \frac{\pi}{3}$ であり、直線上の点 $(0, 5)$ で交わる直線を求めよ。

三角関数三角関数の合成最大値最小値三角関数の恒等式不等式
2025/7/14

数列$\{a_n\}$と$\{b_n\}$が漸化式で定義されている。 (1) $a_1=3, a_2=9, a_{n+1} = a_n + p$を満たす$p$の値を求め、一般項$a_n$を$n$を用い...

数列漸化式極限等差数列極限値
2025/7/14

関数 $y = \frac{1}{2} \log \frac{1-x}{1+x} (-1 < x < 1)$ について、以下の問いに答える。 (1) 対数の性質を用いて、関数を微分する。 (2) $x...

対数関数微分逆関数合成関数
2025/7/14

数列 $\{a_n\}$ と $\{b_n\}$ が与えられており、以下の問いに答える問題です。 (1) $a_1 = 3$, $a_2=9$, $a_{n+1} = a_n + p$ を満たす数列 ...

数列極限等差数列等比数列
2025/7/14

問題は、無限級数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$ の値を求めることです。

無限級数部分分数分解級数の計算極限
2025/7/14

周期 $2\pi$ の関数 $f(x) = |\sin x| \ (-\pi \le x < \pi), \ f(x+2\pi) = f(x)$ のフーリエ級数を求める問題です。

フーリエ級数フーリエ変換積分三角関数
2025/7/14

問題は2つあります。 問題1: 周期 $2\pi$ の関数 $f(x) = |\sin x| (-\pi \le x < \pi)$ で、$f(x+2\pi) = f(x)$ を満たす関数のフーリエ級...

フーリエ級数フーリエ変換三角関数極限
2025/7/14

次の無限級数が収束するかどうかを判定し、収束する場合はその和を求めます。問題は4つありますが、ここでは(1)の問題、$\sum_{n=0}^{\infty} \frac{1}{(-3)^n} = 1 ...

無限級数等比級数収束
2025/7/14