与えられた多項式 $P(x) = (x-2)(x^3 - (x^2 - 2x + 6))$ を整理せよ。代数学多項式展開整理2025/4/281. 問題の内容与えられた多項式 P(x)=(x−2)(x3−(x2−2x+6))P(x) = (x-2)(x^3 - (x^2 - 2x + 6))P(x)=(x−2)(x3−(x2−2x+6)) を整理せよ。2. 解き方の手順まず、P(x)P(x)P(x)を展開する。x3−(x2−2x+6)x^3 - (x^2 - 2x + 6)x3−(x2−2x+6) を x3−x2+2x−6x^3 - x^2 + 2x - 6x3−x2+2x−6 と書き換える。P(x)=(x−2)(x3−x2+2x−6)P(x) = (x-2)(x^3 - x^2 + 2x - 6)P(x)=(x−2)(x3−x2+2x−6)P(x)=x(x3−x2+2x−6)−2(x3−x2+2x−6)P(x) = x(x^3 - x^2 + 2x - 6) - 2(x^3 - x^2 + 2x - 6)P(x)=x(x3−x2+2x−6)−2(x3−x2+2x−6)P(x)=x4−x3+2x2−6x−2x3+2x2−4x+12P(x) = x^4 - x^3 + 2x^2 - 6x - 2x^3 + 2x^2 - 4x + 12P(x)=x4−x3+2x2−6x−2x3+2x2−4x+12P(x)=x4−x3−2x3+2x2+2x2−6x−4x+12P(x) = x^4 - x^3 - 2x^3 + 2x^2 + 2x^2 - 6x - 4x + 12P(x)=x4−x3−2x3+2x2+2x2−6x−4x+12P(x)=x4−3x3+4x2−10x+12P(x) = x^4 - 3x^3 + 4x^2 - 10x + 12P(x)=x4−3x3+4x2−10x+123. 最終的な答えP(x)=x4−3x3+4x2−10x+12P(x) = x^4 - 3x^3 + 4x^2 - 10x + 12P(x)=x4−3x3+4x2−10x+12