与えられた不等式 $\frac{1}{4}x - 1 \leq x + 6$ を解き、$x$ の範囲を求めます。

代数学不等式一次不等式解の範囲
2025/4/28

1. 問題の内容

与えられた不等式 14x1x+6\frac{1}{4}x - 1 \leq x + 6 を解き、xx の範囲を求めます。

2. 解き方の手順

まず、不等式の両辺に4をかけます。
4×(14x1)4×(x+6)4 \times (\frac{1}{4}x - 1) \leq 4 \times (x + 6)
これにより、以下の式が得られます。
x44x+24x - 4 \leq 4x + 24
次に、xx の項を一方に、定数項を他方に移項します。
x4x24+4x - 4x \leq 24 + 4
3x28-3x \leq 28
不等式の両辺を -3 で割ります。負の数で割る場合は、不等号の向きが変わることに注意します。
x283x \geq -\frac{28}{3}

3. 最終的な答え

x283x \geq -\frac{28}{3}

「代数学」の関連問題

与えられた連立方程式を解いて、$x$ と $y$ の値を求める問題です。 連立方程式は以下の通りです。 $0.1x - 0.3y = 1$ $2x - \frac{y+2}{3} = 8$

連立方程式一次方程式代入法方程式の解
2025/4/28

与えられた方程式は、 $2x - y - 1 = \frac{1}{2}(4x - 3y) = \frac{1}{3}(x + 3y - 10)$ この方程式から$x$と$y$の値を求めます。

連立方程式一次方程式
2025/4/28

与えられた3つの式を因数分解する問題です。 (1) $(x^2-4xy)^2 - 16y^4$ (2) $(x+1)^3 - 8$ (3) $(a+b)^3 - (a-c)^3$

因数分解多項式展開
2025/4/28

次の式を因数分解してください。 $(x^2 - 4xy)^2 - 16y^4$

因数分解多項式二次式
2025/4/28

与えられた連立方程式を解いて、$x$ と $y$ の値を求めます。連立方程式は次の通りです。 $\frac{x}{14} - \frac{y}{16} = 1$ $\frac{2}{5}x + \fr...

連立方程式方程式代数
2025/4/28

与えられた二つの式を因数分解します。 (1) $(x^2 - 4xy)^2 - 16y^4$ (2) $(x+1)^3 - 8$

因数分解多項式式の展開
2025/4/28

与えられた数式 $2(x+1)^3 - 8$ を展開し、簡略化することを求められています。

式の展開多項式因数分解簡略化
2025/4/28

与えられた連立方程式を解く問題です。 連立方程式は以下の通りです。 $3(x-1) = 4(y-1)$ $x-1 = 2(y-6)$

連立方程式代入法方程式
2025/4/28

与えられた連立一次方程式を解く問題です。 連立方程式は以下の通りです。 $4x - 3y = -9$ $3x - 5y = -26$

連立一次方程式加減法
2025/4/28

与えられた連立一次方程式を解く問題です。連立方程式は以下の通りです。 $4x - 3y = -9$ $3x - 5y = -26$

連立方程式加減法一次方程式
2025/4/28