与えられた分数の足し算 $\frac{b}{a} + \frac{a}{b}$ を計算します。

代数学分数計算代数式
2025/3/18

1. 問題の内容

与えられた分数の足し算 ba+ab\frac{b}{a} + \frac{a}{b} を計算します。

2. 解き方の手順

分数の足し算を行うためには、まず通分する必要があります。
2つの分数の分母が aabb なので、最小公倍数は abab です。
したがって、各分数を分母が abab になるように変形します。
ba\frac{b}{a} の分子と分母に bb を掛けると、b2ab\frac{b^2}{ab} となります。
ab\frac{a}{b} の分子と分母に aa を掛けると、a2ab\frac{a^2}{ab} となります。
したがって、与えられた式は次のようになります。
ba+ab=b2ab+a2ab\frac{b}{a} + \frac{a}{b} = \frac{b^2}{ab} + \frac{a^2}{ab}
分母が共通になったので、分子を足し合わせることができます。
b2ab+a2ab=b2+a2ab\frac{b^2}{ab} + \frac{a^2}{ab} = \frac{b^2 + a^2}{ab}
よって、答えは a2+b2ab\frac{a^2 + b^2}{ab} となります。

3. 最終的な答え

a2+b2ab\frac{a^2 + b^2}{ab}

「代数学」の関連問題

問題 (5) は $3x^2 + 2xy - y^2 + 7x + 3y + 4$ を因数分解することです。 問題 (7) は $a(b^2 - c^2) + b(c^2 - a^2) + c(a^2...

因数分解多項式式の展開式の整理
2025/4/20

2次関数 $y = 2x^2 - 12x + 22$ について、以下の問いに答える。 (1) x軸との共有点の個数を求める。 (2) $0 \le x < 4$ における $y$ の値域を求める。 (...

二次関数二次関数のグラフ最大値最小値値域
2025/4/20

3点$(-3, -1)$, $(-1, 7)$, $(1, -1)$を通る2次関数を求める問題と、その2次関数のグラフを平行移動して$y = -2x^2 + 4x + 3$のグラフに重ねるには、$x$...

二次関数平方完成グラフの平行移動
2025/4/20

与えられた式 $(x^2 - x)^2 - 8(x^2 - x) + 12$ を因数分解してください。

因数分解多項式
2025/4/20

問題は、与えられた式を因数分解することです。具体的には、 (1) $2ax^2 - 8a$ (3) $(x-4)(3x+1) + 10$ の2つの式を因数分解します。

因数分解二次式共通因数二乗の差の公式たすき掛け
2025/4/20

与えられた数式 $(x - 4)(3x + 1) + 10$ を展開し、整理して簡単にしてください。

多項式の展開多項式の整理二次式
2025/4/20

与えられた式 $(x+4)(x+2)(x-1)(x-3)$ を展開し、整理せよ。

式の展開多項式因数分解
2025/4/20

与えられた二次方程式と二次不等式を解き、空欄を埋める問題です。 (1) $3x^2 - 4x - 4 = 0$ の解を求める。 (2) $-x^2 + 7x - 9 = 0$ の解を求める。 (3) ...

二次方程式二次不等式解の公式因数分解
2025/4/20

与えられた式 $(x+y-z)(x-y+z)$ を展開して整理する問題です。

展開因数分解多項式式の整理
2025/4/20

$\frac{1}{\sqrt{10}-3}$ の整数部分を $a$、小数部分を $b$ とするとき、$a$ と $b$ の値を求める問題です。

平方根有理化整数部分小数部分式の計算
2025/4/20